Analysis of the trade-off between resolution and bandwidth for a nanoforce sensor based on diamagnetic springs.

Emmanuel Piat, Joël Abadie, Stéphane Oster

ICRA 2012 – St Paul, Minnesota
Only micro-nano force effects can be directly measured

A force transducer is needed

Deformation
of an elastic µstructure
when a force is applied on it

Displacement
of a rigid seismic mass
when a force is applied on it

Displacement measured with appropriate sensors

Knowing the displacement, the force must be reconstructed
Sensor configuration

- **Force measured:** along x axis
- **Stiffness:** 0.005 N/m to 0.03 N/m
- **Typ. resolution:** 1 to 5 nN
- **Range:** 1 nN to 40 μN
- **Mass:** 20 to 80 mg
- **Typ. resonant frequency:** 3 Hz

Maglevtube (seismic mass)
Passive force sensor

\[F(t) \rightarrow \text{Transducer} \rightarrow x(t) \rightarrow \text{Deconvolution UIO} \rightarrow \hat{F}(t) \]

Force to determine: \(F(t) \)

Displacement measured: \(x(t) \)

A priori information: \(\)

Environmental noise: \(\)

Measurement noise: \(\)

Estimated force: \(\hat{F}(t) \)
Environmental noise

\(F_x(t) \)

Transducer

\(x(t) \)

STIL confocal chromatic sensor

Measurement noise \(v_k \)

\(m_k^x \)

Kalman filter

\(\hat{F}_k \)

Confocal chromatic sensor (CL2 + MG140)

Zero-mean white gaussian noise \(v_k \)

Variance: \(E[v_k^2] = R \)

Typ. \(R = 1.44 \times 10^{-16} \text{ m}^2 \)

- Discretized uncertainty model for \(F_x(t) \)
- Discretized transducer model (2nd order dynamic)
- Measurement noise model
Time-varying Kalman filter synthesis:

Deconvolution of a noisy output: introduce a necessary trade-off between resolution and bandwidth

Driven here by a single scalar parameter \((N^2/\text{Hz}) \): \(\tilde{W}_F \)

\[
\phi_{\omega,\omega}(\tau) = \tilde{W}_F \delta(\tau) \quad \forall \tau \in \mathbb{R}
\]

Power Spectral Density (PSD) chosen by the end-user

Uncertainty modeling of the input force

\(\hat{F}(t) = \omega(t) \)
Force estimation

Input force model 1 (uncertain)

\(W_{\dot{F}} \)

\(\omega(t) \)

\(\int \)

\(F(t) \)

\(B \)

\(+ \)

\(\dot{X}(t) \)

\(\int \)

\(X(t) \)

\(C \)

\(x(t) \)

Transducer model 2 (deterministic)

\(\dot{A} \)

\(A \)

\(\dot{x}(t) \)

\(x(t) \)

Extended state-space model 3 including the uncertain modeling of the force

\[X^e(t) = \begin{bmatrix} x & \dot{x} & F \end{bmatrix}^T \]

Discretization

\(X^e_k = \begin{bmatrix} x_k & \dot{x}_k & F_k \end{bmatrix}^T \)

Measurement noise variance:

\(R \)

Ext. state uncertainty cov. matrix:

\(Q \)

(matematical consequence of 1 + 2 merging)

\(Q = W_{\dot{F}} \eta(T_s) \)

(x(t) measurement:

\(m^x_k \)

Time-varying Kalman filter

ICRA 2012 – St Paul, Minnesota
Study for fixed values of $W_{\tilde{f}}$ and T_s (and independence of *a priori* knowledge on X_0^e)

A 3rd order-state equation:

$$
\hat{X}_{k+1|k} = A^K \hat{X}_{k|k-1} + B^K m^x_k
$$

$$
\hat{F}_k = C^K \hat{X}_{k|k-1} + D^K m^x_k
$$

A^K, B^K, C^K, D^K are functions of R and $Q = W_{\tilde{f}} \eta(T_s)$
Corresponds to the level of noise n_k in the force estimation

\[x_k = 0 \]
\[m_k^x \]

Transducer displacement

Measurement noise

Steady-state Kalman filter

\[\hat{F}_k \]
\[n_k \]

\[\nu_k \]

ν_k substituted to m_k^x in previous state-equation

\[\hat{X}_{k+1|k} = A^K \hat{X}_{k|k-1} + B^K \nu_k \]
\[n_k = C^K \hat{X}_{k|k-1} + D^K \nu_k \]

n_k dynamic

n_k statistical properties

Mean

\[\mu_k = 0 \quad \forall k \]

Variance

\[\Sigma_k = C^K S_k C^K^T + D^K R D^K^T \]
\[S_{k+1} = A^K S_k A^K^T + B^K R B^K^T \]
Force sensor resolution study

$f_s = 1000$ Hz

n_k standard deviation versus W_F

W_F

$\sigma_{k0.5} (N)$

Power spectral density (N2/Hz)

10^{-18} 10^{-17} 10^{-16} 10^{-15}

Force estimation (N)

estimated force

mean

99% confidence interval

$W_F = 10^{-19}$

$W_F = 10^{-17}$

time (sec.)

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

-2.54 \times 10$^{-7}$

-2.55

-2.56

time (s)

0 1 2 3 4 5

-2.54 \times 10$^{-7}$

-2.55

-2.56
Force sensor bandwidth study

\[F^x(t) \rightarrow \text{ADC} \rightarrow \text{Identified discretized Transducer} \rightarrow x_k \rightarrow m_k \rightarrow \text{Steady-state Kalman filter} \rightarrow \hat{F}_k \]

Measurement noise \(v_k \)

\[x_k = \begin{bmatrix} X_k \\ \hat{X}^e_k |_{k-1} \end{bmatrix} \]

\[x_{k+1} = A_g x_k + B_g \begin{bmatrix} F^x_k \\ v_k \end{bmatrix} \]

\[\hat{F}_k = C_g x_k + D_g \begin{bmatrix} F^x_k \\ v_k \end{bmatrix} \]

Associated transfer function

\[\frac{\hat{F}(e^{j\omega})}{F^x(e^{j\omega})} \]

with \(v_k = 0 \)
Force sensor bandwidth study

$f_s = 1000$ Hz

- $W_F = 10^{-18}$
- $W_F = 10^{-17}$
- $W_F = 10^{-16}$
- $W_F = 10^{-15}$

Measurement noise $v_k = 0$

Transducer displacement

ICRA 2012 – St Paul, Minnesota
Transducer resonant frequency: 3 Hz
The force estimation has to take into account the behavior due to the mass inertia

Estimation processing driven by one parameter

The parameter effect on the trade-off resolution / bandwidth is fully characterized

Design Drawbacks

Open-loop design

Extreme sensitivity to external disturbing forces (seismic and subsonic vibrations, …)

In progress

New modeling including these disturbances

Future design with real-time disturbances measurement and closed-loop disturbances compensation

Please visit our webpage!
www.femto-st.fr/en
AS2M department
SPECIMeN Group
SPECIMeN Group

Sensing strategies, Perception and Characterization at Micro- and Nano-scales

AS2M Dep\(^1\) – Automatic Control and Micro-Mechatronic Systems

http://www.femto-st.fr/fr/Departements-de-recherche/AS2M/Accueil/