The institute
FEMTO's news

Un cerveau optique ultra rapide

cerveau optique ultra-rapide

cerveau optique ultra-rapide

cerveau optique ultra-rapide

L'association de tous nouveaux concepts de calcul inspirés par le cerveau, et de composants photoniques, a permis la mise au point d'un processeur optique capable de résoudre des problèmes complexes de manière ultra-rapide.

Depuis quelques années, le domaine de l’informatique connait une révolution depuis que l’intelligence artificielle est envisagée sous l’angle des réseaux de neurones artificiels de nouvelles générations (notamment avec le deep learning ou apprentissage profond), issus notamment de l’apprentissage machine. L’indicateur le plus visible concerne les géants du secteur comme IBM, Google, Facebook, qui ont en fait un axe fort de développement stratégique en démultipliant les équipes de recherche sur le sujet et en recrutant les chercheurs les plus en pointes dans le domaine.

Ces approches pourtant connues depuis plus de 60 ans bénéficient d’une formidable renaissance (après avoir été quasiment « oubliées » pendant 20 ans), grâce notamment aux nouvelles générations de processeurs parallèles (les GPU, massivement mis en parallèles), et aux bases de données gigantesques accessibles.

Toutefois, les ressources informatiques nécessaires pour traiter ces données devenues massives sur l’internet, et malgré le formidable essor récent des technologies numériques, sont en passe d’atteindre les limites des capacités des unités de calculs modernes en termes de rapidité de traitement des données et d’efficacité de gestion de l’énergie.

C’est pourquoi, au-delà d’une approche informatique, une approche physique propose de nouvelles solutions matérielles, et non logicielles, pour réaliser les calculateurs du futur, destinés à remplacer efficacement (énergie, rapidité) les approches actuelles dominées par la programmation dans des calculateurs conventionnels. En effet, ces derniers proviennent des travaux de John von Neumann qui au début des années cinquante proposa, en s’appuyant sur les travaux de Turing, la première réalisation opérationnelle d’un calculateur qui constitue encore aujourd’hui l’architecture de base de tous les processeurs de nos ordinateurs, qui n'est factuellement pas adaptée aux concepts émergents de l'intelligence artificielle.

Le nouveau concept de calculateur neuromorphique utilisé dans ces travaux, le Reservoir Computing, est a priori celui d'un calculateur universel. Il a pu être implémenté physiquement sur un dispositif photonique avec des lasers, des fibres optiques, des modulateurs et détecteurs de lumière. Sa capacité de calcul, après une phase d’apprentissage, a été testée avec succès dans le cas d'un test standard de reconnaissance vocale. Une vitesse de traitement record de près d'1 million de mots par seconde a été atteinte.

Une des originalités concerne l'utilisation d'une astuce récemment proposée, consistant à émuler dans des dimensions temporelles multi-échelles le traitement de l’information par un réseau de neurones artificiel (habituellement considéré à travers ses dimensions spatio-temporelles), au travers d'une architecture de type oscillateur optoélectronique à boucle à retard. Celle-ci a pu être implémentée physiquement avec des composants standards des télécommunications optiques.

Ce résultat ouvre la voie à une solution technologique originale de réalisation physique des futurs processeurs neuro-inspirés. Cette solution originale donne accès à la puissance de calcul offerte par les processeurs neuronaux, à des vitesses de traitement inégalées (échelles de temps des télécommunications optiques jusqu'à 1 milliard de fois plus rapides que celles du cerveau humain), et potentiellement à une excellente efficacité énergétique grâce à l'utilisation de la lumière comme support de l'information.

Malgré une architecture ayant un niveau de complexité encore relativement modeste, le système photonique réalisé a des performances comparables à celles des meilleures solutions algorithmiques utilisant des ordinateurs standards (donc comparativement beaucoup plus lents).

Les résultats obtenus concernent aussi sur un plan plus fondamental, l'établissement d'un modèle qui crée un lien manquant entre les réseaux de neurones et des concepts de traitement du signal. Ce lien met en lumière une méthode pratique pour trouver des solutions au problème technologique critique du câblage dense entre neurones. En effet, cela consiste à travailler uniquement sur des dimensions temporelles multi-échelles au lieu de tenter de reproduire les dimensions spatio-temporelles, liées au câblage naturellement assuré par les synapses dans le cerveau humain.

Contact : Maxime Jacquot

Tel : 03.63.08.24.16

Voir l'article

  • RENATECH 2024 PhD AWARD

    Adria Grabulosa is rewarded for his work on 3D printed circuits using an original two-photon optical additive manufacturing technique.

    Read more
  • Elsevier article award at BFAS 2024

    Artificial intelligence applied to the electroerosion machining process : Loïc Guiziou1, Emmanuel Ramasso1, Sébastien Thibaud1 et Sébastien Denneulin2 won second prize for best paper at the 8th International Conference on Belief Functions.

    Read more
  • Tribute to our colleague Sarah Benchabane

    The CNRS and the university community of Bourgogne Franche-Comté are in mourning following the death of Sarah Benchabane, Director of Research at the CNRS and internationally renowned researcher in phononics, affiliated to the FEMTO-ST laboratory.

    Read more
  • Does the i-motif structure of DNA exist in the cell?

    As part of an interdisciplinary project involving FEMTO-ST, a new scientific study is reopening the debate on the very existence of these structures in DNA and their potential therapeutic interest in cell biology for the treatment of certain cancers.

    Read more
  • Lancement du projet européen FEDER régionalisé BioIMP

    Une alliance des experts de la santé et des microtechniques pour optimiser la fabrication des biomédicaments.

    Read more
  • Pink October: A smart bra project

    Zeina Al Masry talks to France 3 TV about her innovative connected bra project for the early detection of breast cancer.

    Read more
  • Vincent Giordano,winner of the EFTF Award 2024

    This award recognises a career spanning more than 35 years of research into frequency metrology, including the development of sapphire oscillators.

    Read more
  • Electronique moléculaire : un nouveau regard sur l’organisation des molécules ioniques

    Des scientifiques de l’Institut de chimie de Strasbourg et de FEMTO-ST ont développé une méthode innovante permettant d’améliorer la caractérisation des interfaces ioniques à l’échelle nanométrique, et ainsi d’analyser de nouveaux matériaux pressentis pour s’insérer dans la prochaine génération d

    Read more
  • Ondes de spin optiques, un nouvel état de la lumière

    Les états magnétiques présents dans la matière sont une source d’inspiration pour imaginer de nouveaux états de la lumière. Une équipe de l’institut FEMTO-ST a conçu puis créé un équivalent optique des ondes dites « de spin » se propageant dans les aimants.

    Read more
  • FEMTO-ST celebrates its 20th anniversary

    Surrounded by its co-supervisors and partners, the FEMTO-ST institute celebrated its 20th anniversary on Wednesday 26 June in Besançon.

    Read more