The institute
FEMTO's news

Ondes de spin optiques, un nouvel état de la lumière

Les états magnétiques présents dans la matière sont une source d’inspiration pour imaginer de nouveaux états de la lumière. Une équipe de l’institut FEMTO-ST a conçu puis créé un équivalent optique des ondes dites « de spin » se propageant dans les aimants. Basés sur une analogie entre les propriétés « chirales » des matériaux magnétiques et de métamatériaux optiques, ces travaux sont publiés dans la revue Nano Letters.

Les aimants ont la capacité de créer et propager en leur sein des ondes magnétiques microscopiques. Ces ondes dites de spin sont quantifiées sous la forme de « quasiparticules » baptisées magnons.  Elles résultent du phénomène de précession (rotation) des micro-aimantations au cœur du matériau et de couplages entre ces micro-aimantations tournantes.  Les ondes de spin sont actuellement au centre d’une activité scientifique intense, la magnonique, car elles permettent d’envisager le transport et le traitement de l’information dans des architectures miniatures intégrées, sans déplacement d’électrons. La magnonique pourrait donc générer des composants informatiques qui ne chauffent pas, donc se positionner comme une alternative à l’électronique moins couteuse en énergie.

Des chercheurs de l’Institut FEMTO-ST (CNRS/Université de Franche-Comté, Supmicrotech-ENSMM/ Université Technologique Belfort-Montbéliard) ont conçu et créé un équivalent optique des ondes de spin magnétiques dans des chaines de nano-hélices en carbone recouvertes d’une fine couche d’or. L’excitation lumineuse de telles structures « plasmoniques » déclenche des ondes de spin optique se propageant à travers la structure périodique. Chaque nano-hélice développe un phénomène optique (plasmonique) local tournant qui, par couplages successifs entre nanostructures adjacentes, aboutit à la production d’une nouvelle onde lumineuse partageant des similitudes avec les ondes de spin magnétiques. Cette approche repose sur l’exploitation de la chiralité géométrique de la matière nanostructurée comme un équivalent pour l’optique de la chiralité gyromagnétique à l’origine des micro-aimantations tournantes produisant les ondes de spin magnétiques.

Les ondes de spin optiques permettent d’entrevoir des moyens inédits de contrôler la lumière à très petite échelle. Sous leurs formes élémentaires, les ondes de spin optiques pourraient aboutir au concept de magnons optiques, une nouvelle famille de quasiparticules de lumière transportées dans des réseaux de nanostructures chirales à modes propres tournants.

Ces travaux sont soutenus par la Graduate School EIPHI.

[[{"fid":"35551","view_mode":"default","fields":{"format":"default","alignment":"","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false,"external_url":""},"type":"media","field_deltas":{"1":{"format":"default","alignment":"","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false,"external_url":""}},"attributes":{"height":"194","width":"361","class":"media-element file-default","data-delta":"1"}}]]

[[{"fid":"35552","view_mode":"default","fields":{"format":"default","alignment":"","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false,"external_url":""},"type":"media","field_deltas":{"2":{"format":"default","alignment":"","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false,"external_url":""}},"attributes":{"height":"194","width":"365","class":"media-element file-default","data-delta":"2"}}]]

© Femto-ST

En haut, vue artistique comparative des concepts d’ondes de spin magnétique et optique. Les flèches vertes représentent les micro-aimantations, constitutives d’un aimant, en mouvements de précession. Les flèches jaunes symbolisent les couplages entre les micro-aimantations tournantes. Les hélices rouges modélisent les modes plasmoniques tournants portés par les nano-hélices en or. Les flèches jaunes désignent les couplages optiques entre nanohélices. L’idée de mouvement de rotation locale à l’origine des ces deux types d’ondes est illustrée à l’aide de cercles bleus à rayon rouge. Les rayons rouges indiquent les retards temporels entre mouvements rotatoires successifs. Cette image a été réalisée avec le concours de Blandine Guichardaz.
En bas, image au microscope électronique à balayage d’une chaîne d'hélices, support des ondes de spin optiques. L’échantillon est constitué de dix hélices de carbone de 6 tours recouvertes d’une fine couche d'or (25 nm). Les nanostructures sont fabriquées sur une couche d'or de 100 nm d'épaisseur déposée sur un substrat de verre de 1 mm d'épaisseur. Barres d’échelle : 2 µm. La chaine « plasmonique » est excitée localement à l'aide d'une nano-ouverture rectangulaire gravée au pieds de la nano-hélice la plus à droite. Sous illumination par le substrat, la nano-ouverture couple ponctuellement la lumière à la chaîne de nano-hélices.

 

Références :
Karakhanyan, R. Salut, M.A. Suarez, N. Martin and T. Grosjean.
Nano Lett. (2024)
DOI : https://pubs.acs.org/doi/10.1021/acs.nanolett.4c01346

Contact chercheur :
Thierry Grosjean – FEMTO-ST
thierry.grosjean@univ-fcomte.fr

Contact communication INSIS :
insis.communication@cnrs.fr

Lire l'article publié par le CNRS :
https://www.insis.cnrs.fr/fr/cnrsinfo/les-ondes-de-spin-optiques-un-nouvel-etat-de-la-lumiere

 

  • Océane Topenot_Photographe @ludovic Godard

    Océane Topenot : un parcours d'études exemplaire

    Diplômée ingénieure de SUPMICROTECH-ENSMM puis d’un doctorat en mécanique à FEMTO-ST, Océane intègre l’équipementier aéronautique SAFRAN.

    Read more
  • Tribute to Frédéric THIEBAUD

    The academic community has lost a valued colleague and friend,full professor at Marie and Louis Pasteur University and researcher at FEMTO-ST in materials science.

    Read more
  • Michel de Labachelerie receives the Legion of honor

    National recognition for this CNRS scientist, a specialist in micro and nanotechnologies, who has contributed significantly to the structuring of national and regional research as founder and first Director of the FEMTO-ST institute.

    Read more
  • Launch of the European i-Nano-T project

    The Bourgogne Franche-Comté region is banking on regional scientific and industrial synergy to drive innovation in nanomedicine.

    Read more
  • National Hydrogen Thesis Award for Clotilde ROBERT!

    This award recognizes her work on optimizing hydrogen-powered electric powertrains using a novel approach that combines technological performance, environmental sustainability, and social responsibility.

    Read more
  • I-PhD Innovation competition : Two winners from FEMTO-ST in 2025

    Valentin Reynaud (microforce metrology) andGaultier Gibey (predictive maintenance of hydrogen sytems) are the winners of this sixth edition of the national innovation competition .

    Read more
  • ZETA-SE : A new start-up born out of the work of FEMTO-ST

    Founded in late July 2025, the company offers customized anti-vibration solutions for industry.

    Read more
  • RÉESPIRATION Project: When art breathes to the rhythm of science and medicine

    An interactive work of art born of an unprecedented dialogue between artists, carers and researchers to raise awareness of breathing and its calming power

    Read more
  • Fiber optic sensors: a technological leap thanks to quantum photon counting

    Researchers at FEMTO-ST have extended the range of fiber-optic temperature sensors to 150 kilometers, using photonic detection technology derived from quantum physics.

    Read more
  • Detecting hydrocarbon pollutants in groundwater

    A major environmental and health challenge taken up by FEMTO-ST researchers working with TotalEnergies

    Read more