L'institut
Actualité de FEMTO-ST

Vous êtes ici

Moins le réseau moléculaire est compact et plus les molécules sont liées entre elles !

Sur une surface inerte de silicium, une même molécule peut conduire à plusieurs formes cristallines. Pour certaines molécules, le cristal le plus stable, qui présente le plus grand nombre de liaisons chimiques entre molécules, est aussi celui qui correspond à une phase peu dense. Ce résultat contre-intuitif a été obtenu par des chercheurs de l’IEMN et de l’Institut FEMTO-ST en combinant observations au microscope à effet-tunnel et simulations numériques. Publié dans Physical Review Letters, il démontre l’influence de la surface sur le contrôle du degré de compacité et de coordination des réseaux moléculaires.

Les molécules organiques sont connues pour s’assembler et donner des cristaux dont les propriétés physiques et chimiques sont intimement liées à l’arrangement des molécules dans le cristal. La compréhension des phénomènes de cristallisation, qui entraînent la formation préférentielle d’un cristal par rapport à un autre, est un des enjeux majeurs de secteurs comme l’électronique moléculaire et l’industrie pharmaceutique (où l’agencement peut modifier le goût ou la solubilité d’un médicament). Généralement, dans un cristal moléculaire à trois dimensions, le nombre d’interactions entre molécules croît avec la densité de molécules. C’est également ce que l’on observe dans la vie courante, par exemple dans le métro, où les interactions (ou contacts) augmentent avec la densité des personnes aux heures de pointe.

Dans cette étude, les chercheurs de l’Institut d’électronique, de microélectronique et des nanotechnologies (IEMN, CNRS/Université Lille 1/Université de Valenciennes/ISEN Lille/Ecole Centrale de Lille) et de l’Institut FEMTO-ST (CNRS/Université de Franche-Comté/Ecole Nationale Supérieure de Mécanique et des Microtechnologies de Besançon) ont voulu vérifier si ce principe était également valable dans un plan moléculaire unique, à deux dimensions.

Ils ont réalisé des observations moléculaires par microscopie à effet tunnel (technique capable d’imager une seule molécule) sur des surfaces de silicium constituant un plan moléculaire unique. Ils montrent que, pour certaines molécules, le plan le plus stable consiste en une phase peu dense, qui présente plus d’interactions entre les molécules que dans la phase la plus dense. Pour comprendre l’origine de ce phénomène contre-intuitif, les chercheurs ont développé un code de simulation numérique prenant en compte les interactions entre molécules mais aussi les interactions avec la surface sur laquelle le cristal est fabriqué. Cette modélisation a mis en évidence que la surface du support contribue de manière non négligeable dans l’émergence d’un cristal en particulier.

Optimiser la structure d’assemblages supramoléculaires à la surface des matériaux est un atout pour contrôler la réactivité chimique, la mouillabilité et la réflectivité de ces surfaces. Grâce à la modélisation, il est possible de jouer sur des paramètres tels que la quantité de molécules déposées, la température ou les propriétés physico-chimiques de la surface pour passer d’une forme cristalline à une autre. Les chercheurs peuvent ainsi explorer de nouvelles formes cristallines pour finalement obtenir une forme optimale, et parfois inattendue, à moindre coût. Ce travail réalisé sur un support de silicium ouvre en outre de nouvelles perspectives pour interfacer ce matériau indispensable à l’essor des nouvelles technologies.

Ces travaux ont été réalisés dans le cadre des plateformes de nanotechnologies de l’IEMN et de FEMTO-ST qui font partie du réseau Renatech (https://www.renatech.org).

Cette actualité scientifique est en ligne sur le site de l’INSIS et diffusée dans la lettre du bureau de presse "En direct des labos".

Références :

Surface-Induced Optimal Packing of Two-Dimensional Molecular Networks : Guillaume Copie, Fabrizio Cleri, Younes Makoudi, Christophe Krzeminski, Maxime Berthe, Frédéric Chérioux, Frank Palmino, et Bruno Grandidier, Physical Review Letters, publié le 13 février 2015 DOI: http://dx.doi.org/10.1103/PhysRevLett.114.066101

Contacts :

Frédéric Chérioux Institut FEMTO-ST :frederic.cherioux@femto-st.fr

Bruno Grandidier Institut d'électronique, de microélectronique et de nanotechnologie (IEMN) bruno.grandidier@isen.iemn.univ-lille1.fr

© FEMTO-ST/IEMN

A gauche, le réseau est peu compact (poreux avec des trous hexagonaux) et les interactions sont maximales.

A droite, le réseau est plus compact mais les interactions sont plus faibles.

Les modèles (en surimpression) sont en accord avec les images expérimentales obtenues par microscopie à effet tunnel avec une résolution sub-moléculaire (échelle 10x10 nm2).

Image 3

Image 3

Image 3


  • Fu-Li Hsiao receives a Best Student Paper Award at IEEE Ultrasonics Symposium 2007

    Fu-Li Hsiao, a PhD candidate shared with the National Central university of Taipei, Taiwan, has received one of the Best Student Paper Awards at IEEE Ultrasonics Symposium 2007, held in New York from October 17-31, 2007. The title of his contribution was "Experimental Study of Complete Band Gaps and Waveguiding inside Phononic Crystal Slabs".

    Lire la suite
  • Worshop - Prolégomènes au calcul quantique

    Le worshop "Prolégomènes au calcul quantique" aura lieu à FEMTO-ST à Besançon, les 21et 22 novembre 2007. Ce workshop est soutenu par un Projet exploratoire pluridisciplinaire (PEPS) du département ST2I du CNRS.

    Lire la suite
  • Best Poster Award at ElecMOl’06

    A joint report of collaborative work with researchers of the Laboratoire de Physique Moléculaire was awarded a Best Poster Award during the ElecMOl’06 meeting (December 2006, Minatec, Grenoble, FRANCE). The topic of the communication was about "self-assembly & supramolecular architecture".

    Lire la suite
  • Conférence de Oliver Wright le 13 septembre 2007

    Tracking surface phonons on phononic crystals

    Lire la suite
  • FEMTO-ST élargit ses compétences

    Dès janvier 2008, FEMTO-ST s’élargit, se réorganise et consolide ses activités de recherche dans le domaine des sciences pour l’ingénieur en intégrant de nouvelles compétences.

    FEMTO-ST est aujourd’hui un laboratoire public de 500 personnes avec 6 départements de recherche et une centrale de technologie en ordre de marche pour de nouvelles avancées scientifiques, technologiques et partenariales.

    Lire la suite
  • Prix du meilleur poster lors d'une conférence internationale en Inde

    A. Singh a reçu le prix du meilleur poster lors la conférence internationale sur les sciences et nanotechnologies qui s'est déroulée à Gurgaon en Inde, du 17 au 21 Décembre 2007. Ce prix vient récompenser un travail résultant de la collaboration franco-indienne financée par le programme CEFIPRA entre FEMTO-ST et l'Université de Pune.

    Lire la suite
  • Naissance du département FEMTO-ST/MN2S

    MN2S est né officiellement le premier janvier 2008 ! La vocation de ce département pluridisciplinaire est fédérer les recherches en micro et nano sciences au sein de FEMTO-ST.

    Lire la suite
  • Abdelkrim Khelif reçoit une médaille de bronze CNRS 2007

    Abdelkrim Khelif est le lauréat 2007 de la section 8 du CNRS. Suivant la formule officielle, "La médaille de bronze récompense le premier travail d'un chercheur, qui fait de lui un spécialiste de talent dans son domaine. Cette récompense représente un encouragement du CNRS à poursuivre des recherches bien engagées et déjà fécondes."

    Lire la suite
  • Bilan de la journée FEMTO-Innovation - 4 octobre 2007

    L’institut Carnot « FEMTO-Innovation » a ouvert ses portes à ses partenaires socio-économiques lors d’une journée découverte qui a eu lieu le 4 octobre 2007 à Besançon.

    Lire la suite
  • L'Equipe OPTO a fait la couverture de IEEE Journal of Quantum Electronics

    couverture

    couverture

    couverture

    Lire la suite

Pages