L'institut
Actualité de FEMTO-ST

Vous êtes ici

Un cerveau optique ultra rapide

cerveau optique ultra-rapide

cerveau optique ultra-rapide

cerveau optique ultra-rapide

L'association de tous nouveaux concepts de calcul inspirés par le cerveau, et de composants photoniques, a permis la mise au point d'un processeur optique capable de résoudre des problèmes complexes de manière ultra-rapide.

Depuis quelques années, le domaine de l’informatique connait une révolution depuis que l’intelligence artificielle est envisagée sous l’angle des réseaux de neurones artificiels de nouvelles générations (notamment avec le deep learning ou apprentissage profond), issus notamment de l’apprentissage machine. L’indicateur le plus visible concerne les géants du secteur comme IBM, Google, Facebook, qui ont en fait un axe fort de développement stratégique en démultipliant les équipes de recherche sur le sujet et en recrutant les chercheurs les plus en pointes dans le domaine.

Ces approches pourtant connues depuis plus de 60 ans bénéficient d’une formidable renaissance (après avoir été quasiment « oubliées » pendant 20 ans), grâce notamment aux nouvelles générations de processeurs parallèles (les GPU, massivement mis en parallèles), et aux bases de données gigantesques accessibles.

Toutefois, les ressources informatiques nécessaires pour traiter ces données devenues massives sur l’internet, et malgré le formidable essor récent des technologies numériques, sont en passe d’atteindre les limites des capacités des unités de calculs modernes en termes de rapidité de traitement des données et d’efficacité de gestion de l’énergie.

C’est pourquoi, au-delà d’une approche informatique, une approche physique propose de nouvelles solutions matérielles, et non logicielles, pour réaliser les calculateurs du futur, destinés à remplacer efficacement (énergie, rapidité) les approches actuelles dominées par la programmation dans des calculateurs conventionnels. En effet, ces derniers proviennent des travaux de John von Neumann qui au début des années cinquante proposa, en s’appuyant sur les travaux de Turing, la première réalisation opérationnelle d’un calculateur qui constitue encore aujourd’hui l’architecture de base de tous les processeurs de nos ordinateurs, qui n'est factuellement pas adaptée aux concepts émergents de l'intelligence artificielle.

Le nouveau concept de calculateur neuromorphique utilisé dans ces travaux, le Reservoir Computing, est a priori celui d'un calculateur universel. Il a pu être implémenté physiquement sur un dispositif photonique avec des lasers, des fibres optiques, des modulateurs et détecteurs de lumière. Sa capacité de calcul, après une phase d’apprentissage, a été testée avec succès dans le cas d'un test standard de reconnaissance vocale. Une vitesse de traitement record de près d'1 million de mots par seconde a été atteinte.

Une des originalités concerne l'utilisation d'une astuce récemment proposée, consistant à émuler dans des dimensions temporelles multi-échelles le traitement de l’information par un réseau de neurones artificiel (habituellement considéré à travers ses dimensions spatio-temporelles), au travers d'une architecture de type oscillateur optoélectronique à boucle à retard. Celle-ci a pu être implémentée physiquement avec des composants standards des télécommunications optiques.

Ce résultat ouvre la voie à une solution technologique originale de réalisation physique des futurs processeurs neuro-inspirés. Cette solution originale donne accès à la puissance de calcul offerte par les processeurs neuronaux, à des vitesses de traitement inégalées (échelles de temps des télécommunications optiques jusqu'à 1 milliard de fois plus rapides que celles du cerveau humain), et potentiellement à une excellente efficacité énergétique grâce à l'utilisation de la lumière comme support de l'information.

Malgré une architecture ayant un niveau de complexité encore relativement modeste, le système photonique réalisé a des performances comparables à celles des meilleures solutions algorithmiques utilisant des ordinateurs standards (donc comparativement beaucoup plus lents).

Les résultats obtenus concernent aussi sur un plan plus fondamental, l'établissement d'un modèle qui crée un lien manquant entre les réseaux de neurones et des concepts de traitement du signal. Ce lien met en lumière une méthode pratique pour trouver des solutions au problème technologique critique du câblage dense entre neurones. En effet, cela consiste à travailler uniquement sur des dimensions temporelles multi-échelles au lieu de tenter de reproduire les dimensions spatio-temporelles, liées au câblage naturellement assuré par les synapses dans le cerveau humain.

Contact : Maxime Jacquot

Tel : 03.63.08.24.16

Voir l'article

  • International Summer School on PEM Fuel Cell Systems

    FEMTO-ST, FC Lab et le LabEx ACTION organisent l'école d'été "From Diagnostics to Fault Tolerant Control of PEM Fuel Cell Systems" du 4 au 8 juillet 2016 à Belfort.

    Lire la suite
  • FACS 2016 - The 13th International Conference on Formal Aspects of Component Software

    Le département du DISC, organisateur de la 13ème Conférence Internationale FACS.

    Lire la suite
  • Colloque "Fatigue et durabilité des composites biosourcés"

    Le département Mécanique Appliquée organise le colloque intitulé Fatigue et durabilité des composites biosourcés. Il se tiendra à Besançon du 25 au 27 mai 2016.

    Lire la suite
  • Student Poster Award à la conférence IEEE International Frequency Control Symposium,

    Etienne Vaillant, Doctorant au département Temps-Fréquence de FEMTO-ST a obtenu un Student Poster Award à la conférence IEEE International Frequency Control Symposium, qui s'est tenue à New-Orleans, Louisiana (USA) du 9 au 12 mai.

    Lire la suite
  • Nicolas Chaillet élu président de la COMUE Université Bourgogne Franche-Comté

    Le conseil d’administration de la COMUE Bourgogne Franche-Comté, réuni le 25 avril, a élu à sa présidence Nicolas Chaillet pour un mandat de 4 ans. Actuellement professeur à l’Université de Franche-Comté et directeur du laboratoire FEMTO-ST, Nicolas Chaillet démissionne donc de ses fonctions à FEMTO-ST.
    Le directeur adjoint, Laurent Larger, reprend la direction par intérim.

    Lire la suite
  • Numéro spécial des Comptes Rendus Physique sur les cristaux phononiques

    À lire : numéro spécial des Comptes Rendus Physique (revue internationale de l'Académie des Sciences) consacré aux cristaux phononiques et coordonné par Vincent Laude.

    Lire la suite
  • Un poster Award obtenu à l'EFTF 2016

    Souleymane Diallo (Doctorant au département Optique) a obtenu un Student Poster Award à la conférence EFTF...

    Lire la suite
  • Conférence-ateliers "Le Temps et les horloges atomiques"

    Le étudiants du CMI de physique et de mécanique de l’UFC organisent une conférence-ateliers le mercredi 27 avril sur la thématique du temps et des micro-horloges atomiques animée par des chercheurs de l’institut FEMTO-ST.

    Lire la suite
  • 1er prototype de groupe électrogène hybride à hydrogène

    Dans le cadre d’un projet de maturation visant à promouvoir l’hydrogène -énergie, une équipe de recherche de la fédération de recherche FCLAB, associant FEMTO-ST, a développé son premier prototype de groupe électrogène à hydrogène qui a été présenté en avant-première à Belfort le 7 avril

    Lire la suite
  • François Courvoisier, lauréat d'une bourse ERC Consolidator Grants, reçoit le prix Aimé Cotton

    La société française de physique a décerné le prix Aimé Cotton à François Courvoisier, également lauréat d’une bourse ERC Consolidator Grants 2015.

    Lire la suite

Pages