L'institut
Actualité de FEMTO-ST

Vous êtes ici

Comprendre la cytotoxicité des nanoparticules métalliques

Une étude récente publiée dans la revue « Chemical Science » et impliquant FEMTO-ST donne de nouvelles perspectives dans la compréhension des mécanismes d’altération de l’ADN dans les cellules par les nanoparticules métalliques.

Le stress oxydant est l’un des processus souvent incriminés à la genèse de nombreuses maladies, comme les cancers. Ce stress oxydant est caractérisé par la production dans les cellules d’espèces oxydantes appelées ROS (reactive oxygene species), qui peuvent altérer l’ADN. La production des ROS découle de processus de transfert d’électrons faisant intervenir des cations métalliques. Heureusement, le plus souvent les cellules possèdent des systèmes efficaces d’auto-défense efficaces qui préviennent la formation des ROS. Des molécules de la famille des catéchols (des molécules aromatiques possédant au moins deux fonctions alcool adjacentes) jouent ce rôle d’agents de défense contre les ROS. Ces mécanismes d’échanges d’électrons bien connus expliquent parfaitement la toxicité des nanoparticules d’oxyde métalliques. En revanche, le mécanisme d’action des nanoparticules métalliques reste méconnu alors qu’elles sont pourtant plus toxiques que leurs alter-ego à base d’oxydes ou les cations métalliques correspondants en solution.

Des chercheurs de l’Institut Néel (CNRS/Université Grenoble Alpes), de l’Institut FEMTO-ST (CNRS/Université Bourgogne-Franche-Comté), de l’Institut de la science des matériaux de Madrid (Espagne) et de l’Institut des matériaux de Trieste (Italie) ont découvert des sources de cyto-toxicité pour des nanoparticules métalliques.

Pour comprendre et modéliser le rôle de la surface des nanoparticules, les chercheurs ont concentré leur étude sur une surface de basse énergie (particulièrement stable) du cuivre interagissant avec une couche moléculaire sous ultra-haut vide. Les observations de molécules individuelles, par microscopie à effet tunnel, l’analyse à haute résolution de la composition de chaque molécule, et des calculs ab initio, ont révélé la façon dont se transforme progressivement les molécules. Le principal résultat démontre que la surface de cuivre est le siège d’une réaction d’oxydo-réduction très particulière, dit “intramoléculaire” : les molécules de catéchol voient leurs fonctions alcool oxydées alors que d’autres fonctions sont réduites, grâce à un transfert d’électrons entre les substituants d’une même molécule. Cette transformation est gouvernée par l’alignement des niveaux électroniques de la surface de cuivre et des molécules, la surface de cuivre « forçant » la molécule à se transformer pour permettre son adsorption.

Cette étude propose un mécanisme d’action des surfaces des nanoparticules métalliques pour transformer les agents de défense des cellules en agents de type ROS susceptibles d’altérer l’ADN cellulaire et donc de provoquer des cancers. Le métal joue ici un rôle catalytique, c’est-à-dire qu’une infime quantité de surface de cuivre peut oxyder une très grande quantité de molécules de type catéchol. L’étude illustre la puissance de l’attirail de techniques de la science des surfaces pour mettre à jour l’évolution de systèmes a priori très complexes, y compris vivants. Le travail est amené à se prolonger pour valider en milieu biologique le mécanisme d’action des nanoparticules métalliques découvert et d’ouvrir de nouvelles perspectives dans la compréhension des mécanismes d’altération de l’ADN.

Article en ligne

Article sur site du CNRS

DOI : 10.1039/D0SC04883F

 Contact : Frédéric Chérioux

  • Des vibrations pour mesurer les microfibres optiques

    Les nanotechnologies ont miniaturisé les composants électroniques au point qu’ils nécessitent de nouveaux outils de mesure. Des chercheurs de FEMTO-ST et du laboratoire Charles Fabry proposent ainsi une nouvelle méthode précise et plus simple pour mesurer le diamètre de microfibres optiques grâce à des vibrations sonores.
    Ces travaux sont publiés dans la revue Optica et sont mis en avant par le CNRS

    Lire la suite
  • Prix de la meilleure thèse 2016 du GdR Robotique

    Mohamed Taha Chikhaoui, Doctorant au sein de l'équipe MiNaRoB du département AS2M de FEMTO-ST, a obtenu le prix de la meilleure thèse 2016 du GdR Robotique pour un "Nouveau concept de robots à tubes concentriques à micro-actionneurs à base de polymères électro-actifs".

    Lire la suite
  • Frontiers in Photonics Symposium

    Ce symposium organisé par FEMTO-ST mettra en vedette vendredi 24 novembre à Besançon l'intervention de deux scientifiques de renommée internationale et sera également l'occasion de rassembler des scientifiques, des post-doctorants et des doctorants autour du thème général de l'optique.

    Lire la suite
  • Workshop MicroPhononics & applications

    Dans le cadre de son Labex ACTION, FEMTO-ST organise les 16 et 17 novembre un « workshop » sur la microphononique et ses applications, en collaboration avec le GdR META (« Métamatériaux acoustiques pour l'ingénierie »).

    Lire la suite
  • Du concept de PHM à la maintenance prédictive 2

    Brigitte Chebel-Morello, Jean-Marc Nicod, Christophe Varnier du départment AS2M viennent de signer un nouvel ouvrage paru en ce mois de novembre 2017.

    Lire la suite
  • Daniel Hissel lauréat de la Médaille Blondel 2017

    Le Jury du Comité Blondel a désigné Daniel Hissel, lauréat de l’édition 2017 de la Médaille Blondel pour ses contributions déterminantes à la conception et à la gestion de systèmes énergétiques utilisant l’hydrogène et les piles à combustible.

    Lire la suite
  • UBFC lauréate du PIA 3 "Ecoles universitaires de recherche"

    Le projet "Ingénierie et innovation au travers des sciences physiques, des hautes technologies, et de l'interdisciplinarité" (EIPHI) est lauréat du PIA 3 " Écoles universitaires de recherche "
    Porté par Laurent Larger, directeur de FEMTO-ST, ce projet implique l'uB, l'UFC, l'UTBM et l'ENSMM, ainsi que le CNRS. Il s'appuie sur les écoles doctorales Sciences pour l'ingénieur (SPIM) et Carnot-Pasteur et sur les laboratoires FEMTO-ST et ICB.

    Lire la suite
  • Des sons pour moduler la lumière à l'échelle nanométrique

    Les modulateurs acousto-optiques permettent de modifier l’intensité des ondes lumineuses grâce aux interactions entre le son et la lumière. Alors que ces systèmes avoisinent la taille d’une boite d’allumettes, des chercheurs de FEMTO-ST ont élaboré une théorie pour en concevoir à l’échelle nanométrique. Ces travaux sont publiés dans la revue Optica et sont mis en avant par l’institut INSIS du CNRS.

    Lire la suite
  • Laurent LARGER en direct sur RFI !

    Pourquoi s’inspirer du cerveau pour les ordinateurs du futur ? Laurent Larger nous répond !

    Lire la suite
  • Cédric DECROCQ obtient le "Louis and Edith Zernow award"

    Ce doctorant de l'équipe THERMIE (département Energie) a été récompensé lors de l'International Symposium on Ballistics.

    Lire la suite

Pages