L'institut
Actualité de FEMTO-ST

Vous êtes ici

Nano-fils de polymères

Des molécules, du sel et de la lumière : une recette simple pour former des nano-fils géants!

Les nanofils sont les briques de base de la nanoélectronique car ils permettent de connecter deux dispositifs. Un des défis majeurs des nanotechnologies est de réussir à construire des nanofils de géométrie parfaitement contrôlée avec une longueur de plusieurs microns sur une surface. Des chercheurs de l’Institut des Nanosciences de Provence (IM2NP), de l’Institut FEMTO-ST et de l’Université de Lincoln (Angleterre) sont les premiers à réussir ce challenge en combinant chimie des polymères, observations au microscope à force atomique et simulations numériques. Ils ont démontré que la polymérisation radicalaire induite par une simple LED sur une surface de sel peut aboutir à des nanofils gigantesques de polymère avec une géométrie parfaitement définie. Ces résultats sont publiés dans la revue Nature Chemistry.

Imaginez que vous deviez construire un mur de dix kilomètres de long avec des parpaings mesurant chacun 1m. La méthode intuitive consiste à porter et assembler les parpaings les uns après les autres pour faire croître le mur. Une autre méthode pourrait aussi consister à former des groupes en pré-assemblant quelques parpaings puis porter ces groupes pour les assembler avec d’autres afin de former le mur. Cette seconde méthode est peu recommandée car ces groupes de plusieurs parpaings seraient très lourds et difficilement manipulables pour construire le mur, sauf peut-être pour Obélix. En chimie des polymères, la première méthode s’appelle la polymérisation en chaîne alors que la seconde est dite en étape. Ces méthodes sont parfaitement connues en solution et elles ont de nombreuses applications industrielles. En nanotechnologie, les nanofils étant les briques élémentaires pour connecter deux objets sur un substrat, les polymérisations sur surface furent étudiées dès 2007 pour les fabriquer. Or, de façon très surprenante, seule la polymérisation par étape a été utilisée jusqu’à présent pour former des nanofils sur des surfaces. Malheureusement, à l’instar de l’exemple de la fabrication du mur, la méthode de synthèse par étape n’a jamais abouti à la formation des fils d’au moins dix microns de long en assemblant des molécules mesurant un nanomètre. En effet, les ensembles intermédiaires constitués de quelques molécules diffusent beaucoup trop mal sur une surface pour s’auto-organiser périodiquement sur de grandes longueurs.

Dans cette étude, les chercheurs de l’Institut Matériaux Micro-électronique Nanosciences de Provence (IM2NP, CNRS/Université de d’Aix-Marseille et de Toulon),de l’Institut FEMTO-ST (CNRS/Université de Franche-Comté/Ecole Nationale Supérieure de Mécanique et des Microtechnologies de Besançon) et de l’Université de Lincoln (Angleterre) ont développé la première polymérisation en chaîne sur une surface, via une polymérisation radicalaire photo-induite. Ils ont réalisé des observations moléculaires par microscopie à force atomique (technique capable d’imager une seule molécule) sur des surfaces de sel. Ils ont montré que l’illumination de molécules déposées sur cette surface par une LED ultra-violette permet de créer des liaisons entre chaque molécule pour aboutir à la formation de fils de polymères mesurant jusqu’à deux microns. Ces nano-fils géants sont obtenus grâce une polymérisation en chaîne, c’est-à-dire que les fils s’agrandissent continuellement en réagissant avec les molécules diffusant sur la surface. Ces fils sont parfaitement organisés et sans défaut, ce qui est nécessaire pour conserver des propriétés physiques optimales (optique, électronique, magnétiques etc.) même après plus deux mille réactions élémentaires. Des simulations numériques ont permis de conforter les expériences pour déterminer le mécanisme de croissance des nanofils sur ces surfaces.

Ce travail réalisé ouvre en outre de nouvelles perspectives à l’essor des nouvelles technologies en proposant une solution peu couteuse en énergie et éco-compatible pour l’interfaçage des nano-composants. En effet, d’une part, la méthode de synthèse est très simple, elle ne fait appel qu’à une LED UV pour lier les molécules entre elles et les résultats sont obtenus à température ambiante, limitant la consommation d’énergie nécessaire pour les former par rapport aux chauffages thermiques usités actuellement. D’autre part, les substrats sont hydrosolubles ce qui permettra de très facilement de les dissoudre sans utiliser de solvants nocifs pour l’environnement afin de récupérer les nanofils pour de connecter des nano-composants sur d’autres supports.

Contact : Frédéric Chérioux

Lien article

Ecouter l'interview France Bleu

Lire actualité CNRS

  • Sécuriser et certifier le temps

    Inauguration mardi 9 juillet d’un laboratoire commun entre FEMTO-ST et l’entreprise Gorgy Timing pour développer des systèmes de diffusion sécurisée et certifiée du temps et des fréquences au niveau des réseaux sans fil et informatiques.

    Lire la suite
  • Micro-soufflage de verre pour la réalisation de composants optiques miniatures

    Une équipe de chercheurs de FEMTO-ST a développé des lentilles miniatures coniques en revisitant des techniques de soufflage du verre pratiquées depuis l’époque romaine.

    Lire la suite
  • Détecter les problèmes de coagulation des patients en 60 minutes

    Des chercheurs de FEMTO-ST et de l’Université de Genève ont mis au point un appareil permettant d’investiguer en conditions réelles les capacités des plaquettes du patient à stopper les saignements.

    Lire la suite
  • Focus sur le projet européen MiMédi

    Mardi 11 juin, les équipes de l’Institut FEMTO-ST et de l’EFS Bourgogne-Franche-Comté ont présenté, en présence de représentants de la Région, un important projet de recherche européen de spécialisation intelligente régionale.

    Lire la suite
  • Réunion de clôture du projet S3-4AlpClusters

    Les 13 et 14 mars, la conférence finale du projet S3-4AlpClusters a eu lieu à Venise, en présence de tous les partenaires (dont FEMTO-ST), les observateurs, des décideurs politiques et de membres de la Commission européenn

    Lire la suite
  • Le Prix W. G. Cady décerné à Serge GALLIOU à l’IEEE IFCS 2019

    Ce prix récompense les contributions exceptionnelles et pionnières de Serge Galliou dans le développement de résonateurs acoustiques cryogéniques à extrêmement grand facteur de qualité (très faibles pertes mécaniques) pour des applications capteurs, oscillateurs ou de physique fondamentale.

    Lire la suite
  • FEMTO@SCHOOL : des chercheurs invitent la lumière dans les lycées

    Les opticiens de FEMTO-ST proposent un large éventail d'activités de vulgarisation autour de la lumière et de ses applications pour susciter l’intérêt des lycéens pour les sciences et les technologies. 

    Lire la suite
  • Médailles de bronze du CNRS : un doublé historique pour FEMTO-ST

    Aude Bolopion (micro-nano robotique biomédicale) et Nadia Yousfi Steiner (diagnostic piles à combustible) sont récompensées de la médaille de bronze 2019 du CNRS pour leurs travaux de recherche prometteurs.

    Lire la suite
  • Best student paper award pour Rémi Meyer

    Rémi Meyer a obtenu le prix de la meilleure présentation étudiante lors de la dernière conférence SPIE-Photonics West pour ses travaux portant sur l’usinage laser avec une précision micrométrique appliqué à la découpe du verre de grande épaisseur.

    Lire la suite
  • Visite du président du CNRS à FEMTO-ST

    Antoine Petit, président-directeur général du CNRS a été accueilli le 11 février dernier à FEMTO-ST.

     

    Lire la suite

Pages