L'institut
Actualité de FEMTO-ST

Vous êtes ici

Sarah Benchabane lauréate d’une bourse ERC Consolidator grant 2019

Chargée de recherche CNRS à l’Institut FEMTO-ST, Sarah est lauréate d’une prestigieuse bourse du Conseil européen de recherche (ERC) d’un montant de 2M€ pour son projet uNIQUE - Nanophononique pour le traitement de l’information quantique.

Le Conseil européen de la recherche (ERC) a annoncé mardi 10 décembre les 301 lauréats de ses bourses « Consolidator Grant » 2019* qui bénéficieront d’une enveloppe globale de 600 millions d’euros.

La France se classe en troisième position des récipiendaires avec 43 projets récompensés cette année, contre 32 en 2018, derrière l’Allemagne (52) et le Royaume-Uni (50).

Pour rappel, depuis 2007 - date de création de Conseil Européen de la Recherche – l’institut FEMTO-ST compte désormais 4 lauréats de bourses ERC : Yanne K CHEMBO (starting grant 2011 : 1,4M€), John DUDLEY (advanced grant 2011 : 1,8M€), François COURVOISIER (consolidator grant 2015 : 2M€) et Sarah BENCHABANE (consolidator grant 2019 : 2M€)

*La bourse Consolidator Grant est réservée aux chercheurs - sept à douze ans après la thèse avec un financement allant jusqu’à 2,75 millions d’euros. Elle finance des projets exploratoires, originaux, porteurs de découvertes scientifiques, techniques et sociétales et est octroyée uniquement sur le critère de l’excellence scientifique.

 

Le projet ERC uNIQUE de Sarah BENCHABANE (Nanophononique pour le traitement de l’information quantique – Nanophononics for quantum information processing) 

vise à exploiter pleinement le potentiel offert par les ondes élastiques de surface en adoptant une approche au confluent de la phononique, la nanomécanique et l’acoustique quantique. L’objectif ultime y est de développer une plateforme tout-électromécanique de traitement quantique de l’information, dans laquelle des phonons issus de résonateurs mécaniques pourraient être interfacés avec des phonons de surface propagatifs à des fins de transport et de traitement du signal dans un système intégré. Cette plateforme pourrait, à terme, s’hybrider à d’autres systèmes quantiques, permettant ainsi de concevoir des dispositifs quantiques combinant différents degrés de liberté physiques.

La notion de vibration mécanique constitue l’un des fondements de la physique classique. Elle a cependant connu un renouveau spectaculaire au cours de ces dernières décennies, lié à l’avènement et au développement des micro- et nanotechnologies. Les microsystèmes électromécaniques, ou MEMS, ont par exemple su atteindre un degré de maturité considérable sur une échelle de temps des plus modestes et font maintenant partie intégrante de notre vie quotidienne. Parmi ces dispositifs figurent notamment les dispositifs à ondes élastiques de surface. Comme leur nom le laisse présager, ces dispositifs abritent des vibrations mécaniques capables de se propager à la surface d’un matériau. Ce sont donc des équivalents microscopiques des ondes de Rayleigh d’un séisme. Elles présentent certaines propriétés séduisantes, à l’image de leurs très faibles pertes de propagation et, ce qui peut paraître contre-intuitif, de leur faible vitesse de propagation au regard des ondes électromagnétiques. Ces propriétés les ont érigées en composants phares dans le domaine des télécommunications sans fils : les ondes élastiques de surface permettent de filtrer mais aussi de retarder un signal encodant une information en le transportant sur une distance très réduite, répondant ainsi à la nécessité d’assurer un grand degré de compacité à ces composants. Les composants à ondes de surface se comptent ainsi par dizaines au sein d’un seul téléphone mobile de dernière génération.

Comme toute vibration mécanique, les ondes élastiques de surface peuvent venir affecter leur environnement en agissant par exemple sur les champs de contraintes, de déformations, ou même sur le champ électrique. Cette propriété remarquable leur permet de se coupler à d’autres degrés de liberté physiques : des champs optiques, des objets magnétiques, ou des circuits électroniques. L’un des points clés de ce processus est que la cohérence intrinsèque de ces vibrations mécaniques est conservée. Ce phénomène est bien connu et a été largement exploité dans le contexte des nanorésonateurs mécaniques, ouvrant d’excitantes perspectives en physique fondamentale. La faible masse de ces résonateurs les rend extrêmement sensibles à leur environnement. Ce sont donc des objets particulièrement appropriés à la réalisation de capteurs ultimes. Mais cette propriété leur confère également la possibilité d’atteindre un régime de fonctionnement quantique.  De récents travaux ont démontré que ces observations s’appliquaient aussi aux ondes élastiques de surface, qui se sont également révélées capables de transporter des états quantiques via des phonons uniques. Les approches proposées ne tirent toutefois pas encore profit de tout le potentiel offert par les propriétés de propagation de ces vibrations mécaniques particulières.


Parcours de Sarah BENCHABANE

Après l'obtention d'un DEA spécialité Optique et Optoélectronique obtenu en 2003 à l'Université Jean Monnet de Saint-Etienne, Sarah Benchabane a intégré l'Institut FEMTO-ST pour préparer un doctorat en Sciences pour l'Ingénieur obtenu en Décembre 2006. A l'issue de cette thèse, elle a rejoint le groupe d'Optoélectronique de l'Institut de Ciences Fotoniques (ICFO) à Barcelone en tant que chercheur contractuel. Depuis janvier 2008, elle a réintégré FEMTO-ST en tant que chargée de recherche CNRS. Ses activités s'orientent depuis lors autour de l’étude de la propagation et du confinement des ondes élastiques dans des micro- ou nano-structures, dans les cristaux phononiques en particulier. Les travaux menés sont à forte coloration expérimentale et technologique: ils visent à développer des dispositifs et concepts ouvrant des perspectives d’applications au traitement électro-acoustique du signal, mais également à réaliser des systèmes présentant un spectre d’applications s’étendant au-delà de l’acoustique, en évaluant le potentiel d’interaction avec d’autres phénomènes susceptibles d’être affectés par une déformation élastique. Ses brillants travaux lui valent de recevoir en 2012 la médaille de bronze du CNRS.

Contact :

Sarah BENCHABANE
Tel : 03 63 08 24 54

Découvrez tous les lauréats CNRS de la délégation centre-est

Découvrez tous les lauréats CNRS sur le site de l'Institut des Sciences de l'Ingénierie et des Systèmes

 

 

 

Award
  • Mengjia Wang reçoit le « Chinese government award 2020 »

    Doctorant au département d’Optique de FEMTO-ST de 2016 à 2019, Mengjia Wang a été récompensé par le Gouvernement Chinois pour ses travaux de thèse remarquables dans le domaine de la nanophotonique et de la plasmonique.

    Lire la suite
  • Laurent LARGER nommé Fellow 2021 de L’OSA

    Professeur de Physique/optique à l’Université de Franche-Comté et chercheur à FEMTO-ST, Laurent Larger est récompensé pour ses travaux pionniers sur la dynamique non linéaire en optoélectronique et sur le développement de nouvelles architectures pour l’intelligence artificielle photonique.

    Lire la suite
  • Concours CNRS « la Preuve par l'Image »

    Découvrez la sélection des 20 images sélectionnées par le CNRS, dont l’une est présentée par FEMTO-ST, et votez pour désigner la photo « Prix du public ».

    Lire la suite
  • Webconférences sur "e.Micronora"

    Dans le cadre de l’évènement virtuel sur les microtechniques « e.Micronora », FEMTO-ST propose des conférences en ligne le jeudi 24 septembre  au matin. Une opportunité, notamment pour les industriels, de découvrir les ressources mises à disposition par les laboratoires de recherche.

    Lire la suite
  • Imager l’interférence de photons intriqués de dimensionalité géante

    Une équipe d’opticiens a développé un dispositif d’imagerie permettant la résolution spatiale et temporelle du phénomène d’interférence quantique entre des paires de photons intriqués. Ces travaux ouvrent la voie au développement de protocoles d’information à très haute dimension

    Lire la suite
  • Concours posters doctorants : 11 ambassadeurs récompensés

    11 doctorants de 1ère année mis à l’honneur lors de l’Assemblée générale de FEMTO-ST du 10 juillet.

    Lire la suite
  • Fei GAO reçoit le prix «IEEE J.D. Irwin Early Career Award »

    Membre de l'équipe SHARPAC et Directeur-Adjoint de FEMTO-ST, Fei Gao a été récompensé par la société IES de IEEE en raison de ses travaux remarquables dans le domaine de l'amélioration de la fiabilité des chaînes de traction électrique à hydrogène.

    Lire la suite
  • Daniel HISSEL, lauréat de la médaille de l’innovation 2020 du CNRS

    Professeur à l’Université de Franche-Comté, chercheur à FEMTO-ST et co-fondateur d’une start-up pour des piles à hydrogène plus performantes, Daniel HISSEL fait partie des quatre lauréats nationaux de la médaille de l’innovation 2020 du CNRS.

    Lire la suite
  • Une nouvelle source de lumière infrarouge grâce à des cascades de fibres optiques

    Des scientifiques de l’institut FEMTO-ST et de l'Université McGill (Montréal, Canada) ont conçu et développé en collaboration avec trois sociétés françaises une source de lumière couvrant toute la gamme de longueur d’onde de l’infrarouge moyen : de 2 à 10 µm.

    Lire la suite
  • Des cristaux topologiques pour guider les ondes à la surface de l’eau

    Les isolants topologiques ont la propriété d’être conducteurs sur leur surface, mais isolants dans leur volume et permettent un guidage très efficace des ondes par l’ingénierie de la structure de ces matériaux, généralement agencés selon une symétrie hexagonale inspirée de celle du graphène.

    Lire la suite

Pages