The institute
FEMTO's news

You are here

Sarah Benchabane winner of an ERC Consolidator grant 2019

CNRS Research Fellow at the FEMTO-ST Institute, Sarah is awarded with a prestigious €2M European Research Council (ERC) grant for her  project : Nanophonics for Quantum Information Processing.

The European Research Council (ERC) announced on Tuesday 10 December the 301 winners of its 2019 "Consolidator Grant ", which will receive a total of €600 million.

France ranks third among the recipients with 43 projects awarded this year, compared to 32 in 2018, behind Germany (52) and the United Kingdom (50).

As a reminder, since 2007 - the date of creation of the European Research Council - the FEMTO-ST Institute now has 4 ERC scholarship winners: Yanne K CHEMBO (starting grant 2011: €1.4M), John DUDLEY (advanced grant 2011: €1.8M), François COURVOISIER (consolidator grant 2015: €2M) and Sarah BENCHABANE (consolidated grant 2019: €2M).

Nanophonics for Quantum Information Processing Project

Over the past thirty years, the remarkable technological advances in microfabrication processes have thrust mechanical vibrations into the quantum realm. The intrinsic coherence of mechanical motion and the capability to couple it to other physical degrees of freedom hold promises of scalable hybrid quantum platforms. But mechanical vibrations are also powerful conveyors of physical information. They are ubiquitously used in wireless communication systems, where bulk and surface acoustic wave (BAW and SAW) devices are prevalent. Their high achievable quality factors and frequencies, as well as their low propagation speed, are appropriate ingredients for information processing: they are synonymous of storage and delay. Recent works have shown that SAW could be operated in the single-phonon regime, potentially behaving as a quantum bus between solid-state qubits. The proposed approaches, however, do not yet take advantage of wave propagation management at the substrate surface itself.

The uNIQUE project aims at the development of an all-electro-acousto-mechanical quantum information platform exploiting the full potential offered by surface acoustic waves in the single-phonon regime, and by mechanical resonators beyond the standard quantum limit. It adopts a yet unexplored approach at the crossing of phononics, nanomechanics and quantum acoustics to yield a fully coherent mechanical playground that can be used at the interface with other solid-state or photon qubits or as an independent quantum signal processing system. It will exploit the substrate surface to prepare and transfer nonclassical states of motion of surface-coupled phononic resonators with the utmost ambition to encode the state information in a travelling single-phonon, allowing remote entanglement. This platform will allow manipulating quantum states in exceedingly compact systems driven by a sheer radio-frequency signal.

Contact :

Tel : 33  3 63 08 24 54


  • IEEE ICEMS Conference : Best paper award

    Researchers from SHARPAC team/ENERGY department of FEMTO-ST institute received the Best Paper Award at the IEEE International Conference on Electrical Machines and Systems for their work on the influence of electrical conductivity on eddy-current losses in electrical machines.

    Read more
  • Joint laboratories CNRS-Companies 2021

    FEMTO-ST and AUREA Technology honored at the LAB COM CNRS event in Paris on November 29 and 30

    Read more
  • Nanorobotics of the future: FEMTO-ST enters the 4th dimension

    For the first time, nanorobotic structures have been realized by folding in 3 dimensions a multilayer membrane and proposing their actuation by an electro-thermo mechanical principle.

    Read more
  • Chaos and rogue waves in a supercontinuum laser

    In collaboration with the Universities of Tampere, Aston and ICB laboratory, FEMTO-ST researchers have made significant headway in the ongoing effort to understand the ultrafast chaotic nature of lasers, elucidating for the first time their noise-like pulse operation.

    Read more
  • Julio Andrés Iglesias Martínez receives the Best Student Award at IEEE Ultrasonic Symposium

    His work consists in achieving three-dimensional phononic crystals at the micro-scale with record band-gap width.

    Read more
  • Lessons on textile history and fibre durability from a 4,000-year-old Egyptian flax yarn

    Published in the journal Nature Plants, work involving FEMTO-ST scientists is helping to propose ever more efficient and resistant materials based on flax fibers.

    Read more
  • Programmable matter: world record attempt

    A FEMTO-ST research team is trying to get the record for the largest number of autonomous light blocks assembled in a structure approved by the "Guiness World Record".

    Read more
  • Rodolphe Boudot receives the 2020 EFTF Young Scientist Award

    The IEEE EFTF-IFCS 2021 is a joint conference of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium. The 2021 joint conference, originally planned for Paris in April, has been converted to a virtual conference from 7th to 17th July, 2021

    Read more
  • Giacomo Clementi, grand prize i-PhD

    For his work on Lithium Niobate (LiNbO3), which has led to the design of original and efficient devices for the recovery of vibratory energy by the piezoelectric effect, in particular for connected objects.

    Read more
  • Understanding energy transfers during photosynthesis

    Using three pigments manipulated by scanning tunneling microscopy, researchers from IPCMS and FEMTO-ST are studying energy transfers between molecules to gain a finer understanding of the photosynthesis mechanism in plants. This work is published in Nature Chemistry.

    Read more