The institute
FEMTO's news

You are here

Detecting hydrocarbon pollutants in groundwater

A major environmental and health challenge taken up by FEMTO-ST researchers working with TotalEnergies

BTEX (benzene, toluene, ethylbenzene and xylenes) are hydrocarbon-based pollutants found in groundwater near industrial sites and service stations. Classified as toxic substances, some are even recognized as carcinogens. Their rapid and accurate detection is therefore essential to preserve water resources and protect human health. To meet this challenge, FEMTO-ST researchers, in collaboration with TotalEnergies, have developed a new generation of sensors capable of identifying these pollutants at very low concentrations. This major technological advance paves the way for more effective monitoring and better-targeted pollution control strategies.

A double innovation for ultra-efficient detection

BTEX molecules are not very reactive, which makes them difficult to detect and even more complex to eliminate. To circumvent this obstacle, the researchers exploited supramolecular interactions specific to the aromatic rings of these compounds. By designing and synthesizing a polymer optimized for these interactions, they were able to deposit an ultra-sensitive nanometric layer on the active surface of a sensor.

But that's not all: detecting pollutants in groundwater also poses a technical challenge, as sensors must be autonomous, robust and remotely interrogatable. To meet these requirements, the research team opted for surface-elastic acoustic sensors. Using a substrate made of lithium tantalate, a piezoelectric material, they succeeded in designing a device capable of operating directly in an aquatic environment, without loss of the acoustic signal.

Unprecedented performance and concrete applications

Thanks to this approach combining supramolecular chemistry and acoustic sensor engineering, the researchers have achieved exceptional sensitivity, enabling BTEX to be detected at concentrations below 0.5 ppm - the limit imposed by environmental agencies. This scientific breakthrough has already led to the filing of two patents and one scientific publication.

Towards real-time groundwater monitoring

L’objectif désormais est de tester ces capteurs en conditions réelles, directement dans le sous-sol et sur de longues périodes. À terme, le déploiement d’un réseau de capteurs sur des sites industriels pourrait révolutionner la surveillance des eaux souterraines, en offrant une solution fiable et continue pour détecter et prévenir la contamination par les hydrocarbures.

Contacts :

Jean-Michel Friedt (FEMTO-ST)
Frédéric Chérioux (FEMTO-ST)
Nathalie Nief (TotalEnergies)

More informations : ACS Publications 10.1021/acsomega.4c08826

Detection of BTEX in water by supramolecular recognition

  • RÉESPIRATION Project: When art breathes to the rhythm of science and medicine

    An interactive work of art born of an unprecedented dialogue between artists, carers and researchers to raise awareness of breathing and its calming power

    Read more
  • Fiber optic sensors: a technological leap thanks to quantum photon counting

    Researchers at FEMTO-ST have extended the range of fiber-optic temperature sensors to 150 kilometers, using photonic detection technology derived from quantum physics.

    Read more
  • Two FEMTO-ST PhD students win awards at the IFCS-EFTF 2025 international conference

    Their innovative work paves the way for new environmental monitoring devices and a new generation of atomic micro-clocks.

    Read more
  • 3 tenure track position at FEMTO-ST

    In 3 of its strategic research priorities: micro-nanotechnologies, artificial intelligence and sustainable development.

    Read more
  • FEMTO-ST is launching its support program for MSCA Postdoctoral Fellowships applications !

    The Boostcamp is a two-day intensive workshop aimed at helping international researchers develop a strong application for the 2025 Marie Skłodowska-Curie Postdoctoral Fellowship.

    Read more
  • Using artificial intelligence to collect agricultural data

    ANR OCOD project combines intelligent sensors, drones and optimization for data collection in constrained natural environments

    Read more
  • A European project to prevent perineal tears

    PELVITRACK offers a predictive tool for patricians as part of an interdisciplinary European consortium involving FEMTO-ST.

    Read more
  • Best Paper Award at BIOSTEC 2025

    The work of Ouassim Boukhennoufa and his team combines AI and image optimization in nuclear medicine for more accurate and earlier detection of parathyroid anomalies.

    Read more
  • Kagomé structures for quantum technologies

    Quantum technologies open up promising prospects, but require the development of new materials with remarkable properties.

    Read more
  • Launch of the European SAMI project for energy-free intelligent sensors

    A major scientific and technological collaboration between Silmach and FEMTO-ST in the field of intelligent, autonomous sensors kicks off on January 30.

    Read more

Pages