The institute
FEMTO's news

You are here

Detecting hydrocarbon pollutants in groundwater

A major environmental and health challenge taken up by FEMTO-ST researchers working with TotalEnergies

BTEX (benzene, toluene, ethylbenzene and xylenes) are hydrocarbon-based pollutants found in groundwater near industrial sites and service stations. Classified as toxic substances, some are even recognized as carcinogens. Their rapid and accurate detection is therefore essential to preserve water resources and protect human health. To meet this challenge, FEMTO-ST researchers, in collaboration with TotalEnergies, have developed a new generation of sensors capable of identifying these pollutants at very low concentrations. This major technological advance paves the way for more effective monitoring and better-targeted pollution control strategies.

A double innovation for ultra-efficient detection

BTEX molecules are not very reactive, which makes them difficult to detect and even more complex to eliminate. To circumvent this obstacle, the researchers exploited supramolecular interactions specific to the aromatic rings of these compounds. By designing and synthesizing a polymer optimized for these interactions, they were able to deposit an ultra-sensitive nanometric layer on the active surface of a sensor.

But that's not all: detecting pollutants in groundwater also poses a technical challenge, as sensors must be autonomous, robust and remotely interrogatable. To meet these requirements, the research team opted for surface-elastic acoustic sensors. Using a substrate made of lithium tantalate, a piezoelectric material, they succeeded in designing a device capable of operating directly in an aquatic environment, without loss of the acoustic signal.

Unprecedented performance and concrete applications

Thanks to this approach combining supramolecular chemistry and acoustic sensor engineering, the researchers have achieved exceptional sensitivity, enabling BTEX to be detected at concentrations below 0.5 ppm - the limit imposed by environmental agencies. This scientific breakthrough has already led to the filing of two patents and one scientific publication.

Towards real-time groundwater monitoring

L’objectif désormais est de tester ces capteurs en conditions réelles, directement dans le sous-sol et sur de longues périodes. À terme, le déploiement d’un réseau de capteurs sur des sites industriels pourrait révolutionner la surveillance des eaux souterraines, en offrant une solution fiable et continue pour détecter et prévenir la contamination par les hydrocarbures.

Contacts :

Jean-Michel Friedt (FEMTO-ST)
Frédéric Chérioux (FEMTO-ST)
Nathalie Nief (TotalEnergies)

More informations : ACS Publications 10.1021/acsomega.4c08826

Detection of BTEX in water by supramolecular recognition

  • Chaos and rogue waves in a supercontinuum laser

    In collaboration with the Universities of Tampere, Aston and ICB laboratory, FEMTO-ST researchers have made significant headway in the ongoing effort to understand the ultrafast chaotic nature of lasers, elucidating for the first time their noise-like pulse operation.

    Read more
  • Julio Andrés Iglesias Martínez receives the Best Student Award at IEEE Ultrasonic Symposium

    His work consists in achieving three-dimensional phononic crystals at the micro-scale with record band-gap width.

    Read more
  • Lessons on textile history and fibre durability from a 4,000-year-old Egyptian flax yarn

    Published in the journal Nature Plants, work involving FEMTO-ST scientists is helping to propose ever more efficient and resistant materials based on flax fibers.

    Read more
  • Programmable matter: world record attempt

    A FEMTO-ST research team is trying to get the record for the largest number of autonomous light blocks assembled in a structure approved by the "Guiness World Record".

    Read more
  • Rodolphe Boudot receives the 2020 EFTF Young Scientist Award

    The IEEE EFTF-IFCS 2021 is a joint conference of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium. The 2021 joint conference, originally planned for Paris in April, has been converted to a virtual conference from 7th to 17th July, 2021

    Read more
  • Giacomo Clementi, grand prize i-PhD

    For his work on Lithium Niobate (LiNbO3), which has led to the design of original and efficient devices for the recovery of vibratory energy by the piezoelectric effect, in particular for connected objects.

    Read more
  • Understanding energy transfers during photosynthesis

    Using three pigments manipulated by scanning tunneling microscopy, researchers from IPCMS and FEMTO-ST are studying energy transfers between molecules to gain a finer understanding of the photosynthesis mechanism in plants. This work is published in Nature Chemistry.

    Read more
  • International Day of Light on May 16th

    This year, the Student Chapter of FEMTO-ST organizes on this occasion a photo contest on the theme ′′ Light phenomena in everyday life ".

    Read more
  • AMAROB labelled Deep Tech company

    Spin off of FEMTO-ST, Amarob technologie has received the Deep Tech company label awarded by Bpifrance.

    Read more
  • New platform to support the design and optimization of fuel cell hybride system and battery

    Virtual FCS" is the first freely accessible online simulation platform to support fuel cell manufacturers and users.

     Supported by a European funding, "Virtual FCS" has for French partner the University of Bourgogne-Franche-Comté through the FEMTO-ST institute and the FC-LAB

    Read more

Pages