The institute
FEMTO's news

You are here

Fiber optic sensors: a technological leap thanks to quantum photon counting

Researchers at FEMTO-ST have extended the range of fiber-optic temperature sensors to 150 kilometers, using photonic detection technology derived from quantum physics.

Real-time monitoring of energy networks, particularly offshore wind farms, increasingly relies on distributed fiber optic temperature sensors. These sensors use a pulsed laser injected into an optical fiber, causing temperature-related backscattering of light through a phenomenon known as Brillouin scattering. By analyzing the frequency variations of this scattered light, it is possible to map the temperature along the entire length of the optical fiber.

However, this technology has until now come up against a range limit, generally set at 80 km for commercial systems, due to optical losses and electronic noise in the detectors.

Recent work carried out at FEMTO-ST in collaboration with the Swiss company Omnisens (Prysmian Group) has made it possible to extend this limit to 150 km without intermediate optical amplification. This was achieved by using Single Photon Avalanche Detectors (SPAD), capable of counting photons with extremely low noise. By combining this technology with optimized measurement time, the researchers achieved a spatial resolution of 20 meters over the entire distance, in just one hour of measurement.

An analytical model developed from these experiments suggests that the range could be further extended to 200 km, which would be a new world record for this type of sensor.

This technological breakthrough, achieved as part of Maxime Romanet's thesis, is part of the cross-border INTERREG VI DISTANCE project, which brings together several Franco-Swiss players in photonics and energy monitoring. It also opens up promising prospects for other fields requiring high sensitivity, such as lidar systems and scientific imaging.

This work was published last February in the journal OPTICA : https://doi.org/10.1364/OPTICA.549392

Contact at FEMTO-ST : Jean-Charles BEUGNOT

 

  • RÉESPIRATION Project: When art breathes to the rhythm of science and medicine

    An interactive work of art born of an unprecedented dialogue between artists, carers and researchers to raise awareness of breathing and its calming power

    Read more
  • Detecting hydrocarbon pollutants in groundwater

    A major environmental and health challenge taken up by FEMTO-ST researchers working with TotalEnergies

    Read more
  • 3 tenure track position at FEMTO-ST

    In 3 of its strategic research priorities: micro-nanotechnologies, artificial intelligence and sustainable development.

    Read more
  • FEMTO-ST is launching its support program for MSCA Postdoctoral Fellowships applications !

    The Boostcamp is a two-day intensive workshop aimed at helping international researchers develop a strong application for the 2025 Marie Skłodowska-Curie Postdoctoral Fellowship.

    Read more
  • Using artificial intelligence to collect agricultural data

    ANR OCOD project combines intelligent sensors, drones and optimization for data collection in constrained natural environments

    Read more
  • A European project to prevent perineal tears

    PELVITRACK offers a predictive tool for patricians as part of an interdisciplinary European consortium involving FEMTO-ST.

    Read more
  • Best Paper Award at BIOSTEC 2025

    The work of Ouassim Boukhennoufa and his team combines AI and image optimization in nuclear medicine for more accurate and earlier detection of parathyroid anomalies.

    Read more
  • Kagomé structures for quantum technologies

    Quantum technologies open up promising prospects, but require the development of new materials with remarkable properties.

    Read more
  • Launch of the European SAMI project for energy-free intelligent sensors

    A major scientific and technological collaboration between Silmach and FEMTO-ST in the field of intelligent, autonomous sensors kicks off on January 30.

    Read more
  • RENATECH 2024 PhD AWARD

    Adria Grabulosa is rewarded for his work on 3D printed circuits using an original two-photon optical additive manufacturing technique.

    Read more

Pages