The institute
FEMTO's news

You are here

Fiber optic sensors: a technological leap thanks to quantum photon counting

Researchers at FEMTO-ST have extended the range of fiber-optic temperature sensors to 150 kilometers, using photonic detection technology derived from quantum physics.

Real-time monitoring of energy networks, particularly offshore wind farms, increasingly relies on distributed fiber optic temperature sensors. These sensors use a pulsed laser injected into an optical fiber, causing temperature-related backscattering of light through a phenomenon known as Brillouin scattering. By analyzing the frequency variations of this scattered light, it is possible to map the temperature along the entire length of the optical fiber.

However, this technology has until now come up against a range limit, generally set at 80 km for commercial systems, due to optical losses and electronic noise in the detectors.

Recent work carried out at FEMTO-ST in collaboration with the Swiss company Omnisens (Prysmian Group) has made it possible to extend this limit to 150 km without intermediate optical amplification. This was achieved by using Single Photon Avalanche Detectors (SPAD), capable of counting photons with extremely low noise. By combining this technology with optimized measurement time, the researchers achieved a spatial resolution of 20 meters over the entire distance, in just one hour of measurement.

An analytical model developed from these experiments suggests that the range could be further extended to 200 km, which would be a new world record for this type of sensor.

This technological breakthrough, achieved as part of Maxime Romanet's thesis, is part of the cross-border INTERREG VI DISTANCE project, which brings together several Franco-Swiss players in photonics and energy monitoring. It also opens up promising prospects for other fields requiring high sensitivity, such as lidar systems and scientific imaging.

This work was published last February in the journal OPTICA : https://doi.org/10.1364/OPTICA.549392

Contact at FEMTO-ST : Jean-Charles BEUGNOT

 

  • RENATECH 2024 PhD AWARD

    Adria Grabulosa is rewarded for his work on 3D printed circuits using an original two-photon optical additive manufacturing technique.

    Read more
  • Elsevier article award at BFAS 2024

    Artificial intelligence applied to the electroerosion machining process : Loïc Guiziou1, Emmanuel Ramasso1, Sébastien Thibaud1 et Sébastien Denneulin2 won second prize for best paper at the 8th International Conference on Belief Functions.

    Read more
  • Tribute to our colleague Sarah Benchabane

    The CNRS and the university community of Bourgogne Franche-Comté are in mourning following the death of Sarah Benchabane, Director of Research at the CNRS and internationally renowned researcher in phononics, affiliated to the FEMTO-ST laboratory.

    Read more
  • Does the i-motif structure of DNA exist in the cell?

    As part of an interdisciplinary project involving FEMTO-ST, a new scientific study is reopening the debate on the very existence of these structures in DNA and their potential therapeutic interest in cell biology for the treatment of certain cancers.

    Read more
  • Pink October: A smart bra project

    Zeina Al Masry talks to France 3 TV about her innovative connected bra project for the early detection of breast cancer.

    Read more
  • Vincent Giordano,winner of the EFTF Award 2024

    This award recognises a career spanning more than 35 years of research into frequency metrology, including the development of sapphire oscillators.

    Read more
  • FEMTO-ST celebrates its 20th anniversary

    Surrounded by its co-supervisors and partners, the FEMTO-ST institute celebrated its 20th anniversary on Wednesday 26 June in Besançon.

    Read more
  • John Dudley appointed senior member of the institut universitaire de France

    A member of FEMTO-ST's Optics Department and professor at the University of Franche-Comté, John Dudley has been appointed to a Fundamental Chair in senior category of the Institut Universitaire de France

    Read more
  • Laser nanofabrication: nanopillars emerging from sapphire

    Femtosecond lasers are well known for their ability to cut materials with extreme precision and texture surfaces. A FEMTO-ST team has achieved a world first, opening up a new use for these lasers.

    Read more
  • Mayra Yucely Beb Caal awarded "Female Science Talents Intensive Track Champion 2024"

    A PhD student in FEMTO-ST's micro and nanorobotics team, she is one of 20 talented women from 15 countries, each making a significant contribution in their scientific field.

    Read more

Pages