The institute
FEMTO's news

You are here

Fiber optic sensors: a technological leap thanks to quantum photon counting

Researchers at FEMTO-ST have extended the range of fiber-optic temperature sensors to 150 kilometers, using photonic detection technology derived from quantum physics.

Real-time monitoring of energy networks, particularly offshore wind farms, increasingly relies on distributed fiber optic temperature sensors. These sensors use a pulsed laser injected into an optical fiber, causing temperature-related backscattering of light through a phenomenon known as Brillouin scattering. By analyzing the frequency variations of this scattered light, it is possible to map the temperature along the entire length of the optical fiber.

However, this technology has until now come up against a range limit, generally set at 80 km for commercial systems, due to optical losses and electronic noise in the detectors.

Recent work carried out at FEMTO-ST in collaboration with the Swiss company Omnisens (Prysmian Group) has made it possible to extend this limit to 150 km without intermediate optical amplification. This was achieved by using Single Photon Avalanche Detectors (SPAD), capable of counting photons with extremely low noise. By combining this technology with optimized measurement time, the researchers achieved a spatial resolution of 20 meters over the entire distance, in just one hour of measurement.

An analytical model developed from these experiments suggests that the range could be further extended to 200 km, which would be a new world record for this type of sensor.

This technological breakthrough, achieved as part of Maxime Romanet's thesis, is part of the cross-border INTERREG VI DISTANCE project, which brings together several Franco-Swiss players in photonics and energy monitoring. It also opens up promising prospects for other fields requiring high sensitivity, such as lidar systems and scientific imaging.

This work was published last February in the journal OPTICA : https://doi.org/10.1364/OPTICA.549392

Contact at FEMTO-ST : Jean-Charles BEUGNOT

 

  • I-PhD Innovation Competition: 2 winners from FEMTO-ST

    Maya Geagea (ANIO-PAC project: micro fuel cells), and Gaël Matten (VIBISCUS project: noise reduction system), special jury prize, are winners of the 2019 innovation awards.

    Read more
  • Sarah Benchabane winner of an ERC Consolidator grant 2019

    CNRS Research Fellow at the FEMTO-ST Institute, Sarah is awarded with a prestigious €2M European Research Council (ERC) grant for her  project : Nanophonics for Quantum Information Processing.

    Read more
  • Stardust Odyssey : A new world record !

    Discover the smallest volume character ever animated in stop-motion (frame by frame) through a short film made thanks to FEMTO-ST's high-tech robotic equipments and researchers.

    Read more
  • Final report of the DATAZERO project

    A national project to design and manage medium power data centers powered exclusively by renewable energy sources

    Read more
  • Vladimir GAUTHIER is national winner of the PEPITE competition for young creators of innovative companies

    Entrepreneurial PhD at FEMTO-ST, Vladimir Gauthier is developing a company project on the microrobotic sorting of biological cells, which has received national price !

    Read more
  • Two young regional researchers awarded by the CNRS bronze medal

    Aude Bolopion (microrobotics) and Nadia Yousfi-Steiner (electrical engineering), two young researchers from FEMTO-ST Institute, were awarded by the CNRS bronze medal for their contribution to the advancement of French research.

    Read more
  • Secure and certify time

    Inauguration on Tuesday, July 9 of a joint laboratory between FEMTO-ST and Gorgy Timing to develop secure and certified time and frequency broadcasting systems for wireless and computer networks.

    Read more
  • Micro-soufflage de verre pour la réalisation de composants optiques miniatures

    A team of researchers from FEMTO-ST has developed miniature conical lenses by revisiting glass-blowing techniques practiced since Roman times.

    Read more
  • Detecting problems of the anti-bleeding system of patients in 60 minutes

    Researchers from FEMTO-ST institue and the Universitiy of Geneva  have developed an innovative device that investigates a patient’s platelet capacity in near real-life conditions so that bleeding can be stopped.

    Read more
  • Focus on the european MiMédi project

    On Tuesday 11 June 2019, the teams of the FEMTO-ST Institute and the EFS Bourgogne-Franche-Comté will present, in the presence of representatives of the regional district, an important European research project on regional smart specialisation.  Bringing together 10 industrial and academic partne

    Read more

Pages