The institute
FEMTO's news

You are here

Understanding energy transfers during photosynthesis

Using three pigments manipulated by scanning tunneling microscopy, researchers from IPCMS and FEMTO-ST are studying energy transfers between molecules to gain a finer understanding of the photosynthesis mechanism in plants. This work is published in Nature Chemistry.

Photosynthesis allows plants to transform solar energy into chemical energy necessary for their growth. This mechanism is carried out by a complex assembly of organic molecules, the pigments, whose purpose is to collect, transport and transform solar energy. The successive energy transfers are made by jumps between neighboring molecules, but also via collective phenomena, potentially coherent, involving simultaneously a larger number of pigments. To better understand these effects, it is necessary to unravel these pigment assemblies in order to study separately the role of each active unit in photosynthesis. In this study, using a "bottom-up" approach, the researchers use model pigments isolated from each other, which they then reassemble to form the first functional bases capable of reproducing the energy transfer mechanisms involved in photosynthesis.

Three different pigments are thus deposited by evaporation on a surface in very small quantities, in order to have molecules that are far from each other. A scanning tunneling microscope is used to visualize each of the pigments, and then to manipulate them one by one, in order to form structures close to the elementary bricks observed in natural photosynthetic systems. A first pigment, called donor, absorbs an excitation. A second pigment acts as an intermediary which, depending on its nature, increases or reduces the efficiency of the energy transfer. A third pigment, acceptor, transforms this energy into photon. In the experiment, the scanning tunneling microscope is used to emit an electron to generate a local excitation of one of the pigments, which allows to reproduce the mechanism of absorption of a photon by a pigment of the plant. The energy received by the acceptor is converted into photons rather than chemical energy. The reaction is thus a reverse photosynthesis, with the capture of an electron leading to the release of a photon, but the energy transfers take place in the same way.

This approach allows to control the distance and orientation between the pigments with a precision close to the distance between two atoms and the researchers were able to highlight the role played by interactions in the energy transfer mechanism. These interactions are either long range, such as dipole-dipole, or short range, the latter depending on a mechanism, called exchange, specific to quantum physics. This study also shows that, depending on its chemical nature, the intermediate pigment can play a role of active relay of the excitation, amplify the energy transfer between two molecules without directly intervening in the process, or partially block it.

Thus, by using elementary bricks similar to those used by the plant to transport and convert solar energy, the researchers have developed a platform to reproduce the fine mechanisms of photosynthesis and, in the near future, elucidate them.

Schematic of the experiment where the tip of a scanning tunneling microscope (in gray) is used to excite an assembly of three pigments close to those involved in plant photosynthesis. The excitation generated in the blue pigment is transferred, sequentially, to the red pigment where the energy is transformed into photon (top). Hyper-resolved fluorescence image of the three pigments (bottom).    (Credit: Guillaume Schull, IPCMS)


DOI : 10.1038/s41557-021-00697-z.

Contact at FEMTO-ST : Frédéric Cherioux, CNRS Senior researcher

See the article published on the INP CNRS website

  • National Days on Emerging Technologies in Micro-Nanofabrication

    These scientific days, which take place from November 30 to December 2 in Besançon, France, bring together the major French players in micro-nanotechnologies, process engineering, physics and modeling of manufacturing processes.

    Read more
  • 16th International Symposium on Distributed Autonomous Robotic Systems

    Nearly a hundred scientists from all over the world will meet under the auspices of FEMTO-ST, in Montbéliard from November 28 to 30 to exchange on an interdisciplinary field in full expansion.

    Read more
  • Fei Gao wins the "Sustainable Future Visionary Award"

    Full professor at UTBM and researcher at FEMTO-ST institute, Fei Gao is today one of the world's leading specialists in fuel cells and digital twins.

    Read more
  • Gold micron award at MICRONORA trade fair 2022

    FEMTO-ST is awarded a gold micron for its three-dimensional nanorobotic structure, which is precisely and continuously actuated according to the power of light for the gripping of nano objects.

    Read more
  • FEMTO-ST at MICRONORA trade fair 2022

    From September 27th to 30th, more than 600 direct exhibitors and 15000 professional visitors are expected in Besançon on the international microtechnology exhibition. FEMTO-ST and FEMTO Engineering will be present.

    Read more
  • The fastest pick-and-place robot in the world

    A research team has developed a miniature robot capable of manipulating micrometric objects at unprecedented speeds. This work has been published in the prestigious American journal "Science Robotics"

    Read more
  • Aude Bolopion receives the 2022 “Big-in-Small award”

    This yearly award, from the microrobotics international community in the MARSS conference in Toronto, promotes “the best microrobotician” of the year at the international level.

    Read more
  • FEMTO-ST : 2 full professors appointed to the IUF in its class 2022

    Ausrine MARGUERON-BARTASYTE and Daniel HISSEL are among the 164  national laureates appointed to the Institut Universitaire de France (IUF) by the Minister of Higher Education and Research

    Read more
  • Tribute to our colleague Philippe LUTZ

    Our scientific community of Burgundy-Franche-Comté has just suddenly lost Philippe LUTZ, full professor at the University of Franche-Comté and a leading figure in microrobotics and micromechatronics research at the FEMTO-ST laboratory.

    Read more
  • How to create a chemical bond with light?

    The formation of a chemical bond between two molecules often requires an activation process. Light is a stimulus that is particularly interesting

    Read more