L'institut
Actualité de FEMTO-ST

Vous êtes ici

Comprendre les transferts d'énergie lors de la photosynthèse

A l'aide de trois pigments manipulés par microscopie à effet tunnel, les chercheurs de l'IPCMS et de FEMTO-ST étudient les transferts d'énergie entre molécules pour comprendre plus finement le mécanisme de photosynthèse dans les végétaux. Ces travaux sont publiés dans Nature Chemistry.

La photosynthèse permet aux végétaux de transformer l’énergie solaire en énergie chimique nécessaire à leur croissance. Ce mécanisme est réalisé par un assemblage complexe de molécules organiques, les pigments, ayant pour but de collecter, transporter et transformer l’énergie solaire. Les transferts d’énergie successifs se font par sauts entre molécules voisines, mais également via des phénomènes collectifs, potentiellement cohérents, impliquant simultanément un plus grand nombre de pigments. Mieux comprendre ces effets nécessite de décortiquer ces assemblages de pigments, afin d’étudier séparément le rôle de chaque unité active dans la photosynthèse. Dans cette étude, en adoptant une approche dite « bottom-up », les chercheurs et les chercheuses utilisent des pigments modèles isolés les uns des autres, qu’ils réassemblent ensuite de sorte à former les premières bases fonctionnelles capables de reproduire les mécanismes de transfert d’énergie intervenant dans la photosynthèse.

Trois pigments différents sont ainsi déposés par évaporation sur une surface en très faible quantité, afin de disposer de molécules éloignées les unes des autres. Un microscope à effet tunnel permet de visualiser chacun des pigments, puis de les manipuler un à un, de sorte à former des structures proches des briques élémentaires observées dans les systèmes photosynthétiques naturels. Un premier pigment, dit donneur, absorbe une excitation. Un second joue le rôle d’intermédiaire qui, selon sa nature, augmente ou réduit l’efficacité du transfert d’énergie. Un troisième pigment, accepteur, transforme cette énergie en photon. Dans l'expérience, le microscope à effet tunnel est utilisé pour émettre un électron afin de générer une excitation locale d’un des pigments, ce qui permet de reproduire le mécanisme d’absorption d’un photon par un pigment de la plante. L’énergie reçue par l’accepteur est convertie en photons plutôt qu’en énergie chimique. La réaction correspond ainsi à une photosynthèse à l'envers, la capture d'un électron amenant à la libération d'un photon, mais les transferts d'énergie s’opèrent de la même façon.

Cette approche permet de contrôler la distance et l’orientation entre les pigments avec une précision proche de la distance séparant deux atomes et les chercheurs ont ainsi pu mettre en avant le rôle joué par des interactions dans le mécanisme de transfert d’énergie. Elles sont soit de longue portée, de type dipôle-dipôle, soit de courte portée, ces dernières relevant d’un mécanisme, dit d’échange, propre à la physique quantique. Cette étude montre également que, selon sa nature chimique, le pigment intermédiaire peut jouer un rôle de relais actif de l’excitation, amplifier le transfert d’énergie entre deux molécules sans directement intervenir dans le processus, ou partiellement le bloquer.

Ainsi, en utilisant des briques élémentaires similaires à celles utilisées par la plante pour transporter et convertir l’énergie solaire, les chercheurs ont mis au point une plateforme pour reproduire les mécanismes fins de la photosynthèse et, dans un futur proche, les élucider.

Schéma de l’expérience où la pointe d’un microscope à effet tunnel (en gris) est utilisée pour exciter un assemblage de trois pigments proches de ceux impliqués dans la photosynthèse des végétaux. L’excitation générée dans le pigment bleu est transférée, séquentiellement, jusqu’au pigment rouge où l’énergie est transformée en photon (en haut). Image de fluorescence hyper-résolue des trois pigments (en bas).    (Crédit : Guillaume Schull, IPCMS)

DOI : 10.1038/s41557-021-00697-z.

Contact FEMTO-ST : Frédéric Cherioux, Directeur de recherche CNRS

Voir l'article paru sur le site de l'INP

  • Fei Gao lauréat du prix "Sustainable Future Visionary Award"

    Professeur à l’UTBM et chercheur à FEMTO-ST, Fei Gao est aujourd’hui un des spécialistes mondiaux de la pile à combustible et des jumeaux numériques.

    Lire la suite
  • Micron d’or sur le salon MICRONORA 2022

    FEMTO-ST est récompensé d’un micron d’or pour sa structure nanorobotique tridimensionnelle permettant d’actionner une structure de manière précise et continue en fonction de la puissance de la lumière pour la préhension de nano objets.

    Lire la suite
  • FEMTO-ST sur le salon MICRONORA 2022

    Du 27 au 30 septembre, plus de 600 exposants directs et 15000 visiteurs professionnels sont attendus à Besançon sur le salon international des microtechniques. FEMTO-ST et FEMTO Engineering seront présents.

    Lire la suite
  • Le robot de prise et de dépose le plus rapide du monde

    Une équipe de chercheurs a développé un robot miniature capable de manipuler des objets micrométriques à des vitesses jamais atteintes. Ces travaux font l’objet d’ une publication dans la prestigieuse revue américaine «Science Robotics»

    Lire la suite
  • Aude Bolopion reçoit le très sélectif « Big-in-Small Award 2022 »

    Ce prix annuel,remis lors de la conférence MARSS à Toronto, récompense « le meilleur microroboticien » de l'année au niveau international.

    Lire la suite
  • Engins spatiaux : un lubrifiant solide adapté à l'air comme au vide

    les engins spatiaux sont soumis à des contraintes extrêmes. Des chercheurs ont développé un prototype de lubrifiant solide qui ne souffre pas de l’oxydation à l’air libre et qui fonctionne mieux que les solutions actuelles dans le vide. Ces travaux ont abouti à un dépôt de brevet.

    Lire la suite
  • FEMTO-ST : 2 enseignants-chercheurs nommés à l'IUF dans sa promotion 2022

    Ausrine MARGUERON-BARTASYTE et Daniel HISSEL font partie des 164 nommés à l'Institut Universitaire de France (IUF) par la ministre de l’Enseignement Supérieur et de la Recherche.

    Lire la suite
  • Hommage à notre collègue Philippe LUTZ

    La communauté universitaire de Bourgogne Franche-Comté vient de perdre soudainement Philippe LUTZ, un collègue et ami de grande valeur, professeur à l’Université de Franche-Comté et chercheur de renom en microrobotique au laboratoire FEMTO-ST.

    Lire la suite
  • Comment créer une liaison chimique avec de la lumière ?

    La formation d'une liaison chimique entre deux molécules nécessite souvent un processus d'activation. La lumière est un stimulus qui est particulièrement intéressant. En effet, il évite certains problèmes liés aux autres processus d'activation (chauffage, ajout d'électrons etc.).

    Lire la suite
  • Best student paper Award pour Clément Carlé à la conférence IFCS-EFTF2022

    Ce prix a été obtenu dans la catégorie « Microwave Frequency Standards »de cette conférence internationale majeure du domaine de la métrologie temps-fréquence qui s’est déroulée à Paris, du 24 au 28 avril 2022.

    Lire la suite

Pages