L'institut
Actualité de FEMTO-ST

Vous êtes ici

Moins le réseau moléculaire est compact et plus les molécules sont liées entre elles !

Les molécules organiques sont connues pour s’assembler et donner des cristaux dont les propriétés physiques et chimiques sont intimement liées à l’arrangement des molécules dans le cristal. La compréhension des phénomènes de cristallisation, qui entraînent la formation préférentielle d’un cristal par rapport à un autre, est un des enjeux majeurs de secteurs comme l’électronique moléculaire et l’industrie pharmaceutique (où l’agencement peut modifier le goût ou la solubilité d’un médicament). Généralement, dans un cristal moléculaire à trois dimensions, le nombre d’interactions entre molécules croît avec la densité de molécules. C’est également ce que l’on observe dans la vie courante, par exemple dans le métro, où les interactions (ou contacts) augmentent avec la densité des personnes aux heures de pointe.

Dans cette étude, les chercheurs de l’Institut d’électronique, de microélectronique et des nanotechnologies (IEMN, CNRS/Université Lille 1/Université de Valenciennes/ISEN Lille/Ecole Centrale de Lille) et de l’Institut FEMTO-ST (CNRS/Université de Franche-Comté/Ecole Nationale Supérieure de Mécanique et des Microtechnologies de Besançon) ont voulu vérifier si ce principe était également valable dans un plan moléculaire unique, à deux dimensions.

Ils ont réalisé des observations moléculaires par microscopie à effet tunnel (technique capable d’imager une seule molécule) sur des surfaces de silicium constituant un plan moléculaire unique. Ils montrent que, pour certaines molécules, le plan le plus stable consiste en une phase peu dense, qui présente plus d’interactions entre les molécules que dans la phase la plus dense. Pour comprendre l’origine de ce phénomène contre-intuitif, les chercheurs ont développé un code de simulation numérique prenant en compte les interactions entre molécules mais aussi les interactions avec la surface sur laquelle le cristal est fabriqué. Cette modélisation a mis en évidence que la surface du support contribue de manière non négligeable dans l’émergence d’un cristal en particulier.

Optimiser la structure d’assemblages supramoléculaires à la surface des matériaux est un atout pour contrôler la réactivité chimique, la mouillabilité et la réflectivité de ces surfaces. Grâce à la modélisation, il est possible de jouer sur des paramètres tels que la quantité de molécules déposées, la température ou les propriétés physico-chimiques de la surface pour passer d’une forme cristalline à une autre. Les chercheurs peuvent ainsi explorer de nouvelles formes cristallines pour finalement obtenir une forme optimale, et parfois inattendue, à moindre coût. Ce travail réalisé sur un support de silicium ouvre en outre de nouvelles perspectives pour interfacer ce matériau indispensable à l’essor des nouvelles technologies.

Ces travaux ont été réalisés dans le cadre des plateformes de nanotechnologies de l’IEMN et de FEMTO-ST qui font partie du réseau Renatech (https://www.renatech.org).

Cette actualité scientifique est en ligne sur le site de l’INSIS et diffusée dans la lettre du bureau de presse "En direct des labos".

Références :

Surface-Induced Optimal Packing of Two-Dimensional Molecular Networks : Guillaume Copie, Fabrizio Cleri, Younes Makoudi, Christophe Krzeminski, Maxime Berthe, Frédéric Chérioux, Frank Palmino, et Bruno Grandidier, Physical Review Letters, publié le 13 février 2015 DOI: http://dx.doi.org/10.1103/PhysRevLett.114.066101

Contact :

Frédéric Chérioux-Institut FEMTO-ST

© FEMTO-ST/IEMN

A gauche, le réseau est peu compact (poreux avec des trous hexagonaux) et les interactions sont maximales.

A droite, le réseau est plus compact mais les interactions sont plus faibles.

Les modèles (en surimpression) sont en accord avec les images expérimentales obtenues par microscopie à effet tunnel avec une résolution sub-moléculaire (échelle 10x10 nm2).

image 3

image 3

image 3

  • Les vésicules extracellulaires (EVs) : des médiateurs intercellulaires aux multiples facettes

    La plateforme NanoBioAnalytique (NBA) de FEMTO-ST au service de la qualification des EVs, dans des fluides biologiques complexes, pour des applications diagnostiques ou thérapeutiques.

    Lire la suite
  • Bonne année 2022 !

    La Direction et l'ensemble des membres de FEMTO-ST vous souhaitent une année 2022 pleine de satisfactions personnelles et professionnelles

    Lire la suite
  • Safa MERAGHNI reçoit le prix PEPITE du concours régional « Initiative au féminin »

    Son projet de création de « Smart Medical Assistant » est un dispositif intelligent d’assistance médicale sur smartphone destiné à aider les médecins dans leur diagnostic.

    Lire la suite
  • Conférence IEEE ICEMS : Best paper award

    Des chercheurs de l’équipe SHARPAC du département ENERGIE de FEMTO-ST ont reçu le «Best Paper Award» lors de la Conférence internationale IEEE sur les Machines Électriques et Systèmes pour leurs travaux concernant l’influence de la conductivité électrique sur les pertes par courants de Foucault.

    Lire la suite
  • Laboratoires communs CNRS-Entreprises 2021

    FEMTO-ST et AUREA Technology mis à l’honneur lors du LAB COM CNRS qui s'est tenu à Paris les 29 et 30 novembre.

    Lire la suite
  • Nanorobotique du futur : FEMTO-ST entre dans la 4ème dimension

    Pour la première fois, des structures nanorobotiques ont été réalisées par pliage en 3 dimensions d'une membrane multi-couche en proposant en plus leur actionnement par un principe électro-thermo-mécanique.

    Lire la suite
  • Lumière sur les lasers supercontinuum

    En collaboration avec des collègues des Universités de Tampere, d'Aston et de l'ICB à Dijon, des chercheurs de FEMTO-ST ont fait des progrès significatifs sur la compréhension de la nature chaotique des lasers en étudiant un laser supercontinuum en régime d’impulsions fortement instables.

    Lire la suite
  • Julio Andrés Iglesias Martínez reçoit le prix de la meilleure présentation étudiante à IEEE Ultrasonic Symposium

    Ses travaux consistent à réaliser des cristaux phononiques tridimensionnels à l’échelle microscopique présentant les bandes interdites les plus larges connues à ce jour.

    Lire la suite
  • Des textiles égyptiens vieux de 4000 ans éclairent sur la durabilité des fibres de lin

    Publiés dans la revue Nature Plants, des travaux impliquant des scientifiques de FEMTO-ST aident à proposer des matériaux à base de fibres de lin toujours plus performants et résistants.

    Lire la suite
  • Les Visites insolites du CNRS 2021 : plongez au cœur de la science !

    Plonger dans la peau d’une cellule, comprendre les systèmes de conversion d’énergie ou encore savoir pourquoi et comment l’hydrogène pourrait être le carburant du futur…grâce aux visites insolites organisées à Besançon et Belfort par FEMTO-ST !

    Lire la suite

Pages