L'institut
Actualité de FEMTO-ST

Vous êtes ici

Moins le réseau moléculaire est compact et plus les molécules sont liées entre elles !

Sur une surface inerte de silicium, une même molécule peut conduire à plusieurs formes cristallines. Pour certaines molécules, le cristal le plus stable, qui présente le plus grand nombre de liaisons chimiques entre molécules, est aussi celui qui correspond à une phase peu dense. Ce résultat contre-intuitif a été obtenu par des chercheurs de l’IEMN et de l’Institut FEMTO-ST en combinant observations au microscope à effet-tunnel et simulations numériques. Publié dans Physical Review Letters, il démontre l’influence de la surface sur le contrôle du degré de compacité et de coordination des réseaux moléculaires.

Les molécules organiques sont connues pour s’assembler et donner des cristaux dont les propriétés physiques et chimiques sont intimement liées à l’arrangement des molécules dans le cristal. La compréhension des phénomènes de cristallisation, qui entraînent la formation préférentielle d’un cristal par rapport à un autre, est un des enjeux majeurs de secteurs comme l’électronique moléculaire et l’industrie pharmaceutique (où l’agencement peut modifier le goût ou la solubilité d’un médicament). Généralement, dans un cristal moléculaire à trois dimensions, le nombre d’interactions entre molécules croît avec la densité de molécules. C’est également ce que l’on observe dans la vie courante, par exemple dans le métro, où les interactions (ou contacts) augmentent avec la densité des personnes aux heures de pointe.

Dans cette étude, les chercheurs de l’Institut d’électronique, de microélectronique et des nanotechnologies (IEMN, CNRS/Université Lille 1/Université de Valenciennes/ISEN Lille/Ecole Centrale de Lille) et de l’Institut FEMTO-ST (CNRS/Université de Franche-Comté/Ecole Nationale Supérieure de Mécanique et des Microtechnologies de Besançon) ont voulu vérifier si ce principe était également valable dans un plan moléculaire unique, à deux dimensions.

Ils ont réalisé des observations moléculaires par microscopie à effet tunnel (technique capable d’imager une seule molécule) sur des surfaces de silicium constituant un plan moléculaire unique. Ils montrent que, pour certaines molécules, le plan le plus stable consiste en une phase peu dense, qui présente plus d’interactions entre les molécules que dans la phase la plus dense. Pour comprendre l’origine de ce phénomène contre-intuitif, les chercheurs ont développé un code de simulation numérique prenant en compte les interactions entre molécules mais aussi les interactions avec la surface sur laquelle le cristal est fabriqué. Cette modélisation a mis en évidence que la surface du support contribue de manière non négligeable dans l’émergence d’un cristal en particulier.

Optimiser la structure d’assemblages supramoléculaires à la surface des matériaux est un atout pour contrôler la réactivité chimique, la mouillabilité et la réflectivité de ces surfaces. Grâce à la modélisation, il est possible de jouer sur des paramètres tels que la quantité de molécules déposées, la température ou les propriétés physico-chimiques de la surface pour passer d’une forme cristalline à une autre. Les chercheurs peuvent ainsi explorer de nouvelles formes cristallines pour finalement obtenir une forme optimale, et parfois inattendue, à moindre coût. Ce travail réalisé sur un support de silicium ouvre en outre de nouvelles perspectives pour interfacer ce matériau indispensable à l’essor des nouvelles technologies.

Ces travaux ont été réalisés dans le cadre des plateformes de nanotechnologies de l’IEMN et de FEMTO-ST qui font partie du réseau Renatech (https://www.renatech.org).

Cette actualité scientifique est en ligne sur le site de l’INSIS et diffusée dans la lettre du bureau de presse "En direct des labos".

Références :

Surface-Induced Optimal Packing of Two-Dimensional Molecular Networks : Guillaume Copie, Fabrizio Cleri, Younes Makoudi, Christophe Krzeminski, Maxime Berthe, Frédéric Chérioux, Frank Palmino, et Bruno Grandidier, Physical Review Letters, publié le 13 février 2015 DOI: http://dx.doi.org/10.1103/PhysRevLett.114.066101

Contacts :

Frédéric Chérioux Institut FEMTO-ST :frederic.cherioux@femto-st.fr

Bruno Grandidier Institut d'électronique, de microélectronique et de nanotechnologie (IEMN) bruno.grandidier@isen.iemn.univ-lille1.fr

© FEMTO-ST/IEMN

A gauche, le réseau est peu compact (poreux avec des trous hexagonaux) et les interactions sont maximales.

A droite, le réseau est plus compact mais les interactions sont plus faibles.

Les modèles (en surimpression) sont en accord avec les images expérimentales obtenues par microscopie à effet tunnel avec une résolution sub-moléculaire (échelle 10x10 nm2).

Image 3

Image 3

Image 3


  • Nouvelle plateforme d'aide à la conception et l'optimisation d'un système hybride pile à combustible-batterie

    Première plateforme en ligne et libre d'accès de simulations, "Virtual FCS" propose d'accompagner fabricants et utilisateurs de piles à combustibles.

    Lire la suite
  • ThermoBot : des microrobots qui marchent sur l’eau

    Imaginez, un robot, de la taille d’une mouche, marchant sur la surface de l’eau et poursuivi par un faisceau laser. On pourrait croire à un scénario de science-fiction… 

    Lire la suite
  • Reconnaître un menteur au son de sa voix ?

    Des scientifiques ont démontré que l’intensité, la vitesse et la hauteur de voix de son interlocuteur influaient automatiquement sur notre perception de fiabilité et d’honnêteté de son discours. Ces travaux sont publiés dans la prestigieuse revue « Nature Communications »

    Lire la suite
  • Projet européen de développement de composites biosourcés durables et à hautes performances

    Piloté par FEMTO-ST et porté par l’Université de Franche-Comté, Le projet de R&D « SSUCHY » qui regroupe 17 partenaires européens entre dans sa phase finale. L’occasion de faire le point sur l’avancée des travaux.

    Lire la suite
  • Comprendre la cytotoxicité des nanoparticules métalliques

    Une étude récente publiée dans la revue « Chemical Science » et impliquant FEMTO-ST donne de nouvelles perspectives dans la compréhension des mécanismes d’altération de l’ADN dans les cellules par les nanoparticules métalliques.

    Lire la suite
  • L'intelligence artificielle au service de la photonique ultrarapide de prochaine génération

    Comment l’apprentissage machine et les méthodes associées peuvent permettre d’améliorer les développements des sources laser de prochaine génération et révolutionner les applications où la lumière ultrarapide joue un rôle central ?

    Lire la suite
  • Forte implication de FEMTO-ST dans le projet H2020 « PhotonHub Europe »

    Aider les PME européennes à accroitre leur compétitivité grâce à la photonique. C'est l’objectif de ce projet qui, à travers un guichet unique, propose le soutien de 54 centres de compétences de premier plan en Europe, dont FEMTO-ST, par ailleurs coordinateur scientifique au niveau national.

    Lire la suite
  • Première mise en évidence d’ondes non linéaires autoconfinées au sein de structures plasmoniques

    En apportant les toutes premières preuves expérimentales de l’existence de ce phénomène, les chercheurs de FEMTO-ST et leurs partenaires espèrent pouvoir générer cet effet non-linéaire à l’aide de sources laser peu intenses, afin de l’utiliser pour des applications en nanophotonique.

    Lire la suite
  • Mengjia Wang reçoit le « Chinese government award 2020 »

    Doctorant au département d’Optique de FEMTO-ST de 2016 à 2019, Mengjia Wang a été récompensé par le Gouvernement Chinois pour ses travaux de thèse remarquables dans le domaine de la nanophotonique et de la plasmonique.

    Lire la suite
  • Laurent LARGER nommé Fellow 2021 de L’OSA

    Professeur de Physique/optique à l’Université de Franche-Comté et chercheur à FEMTO-ST, Laurent Larger est récompensé pour ses travaux pionniers sur la dynamique non linéaire en optoélectronique et sur le développement de nouvelles architectures pour l’intelligence artificielle photonique.

    Lire la suite

Pages