The institute
FEMTO's news

You are here

Dissociating Nitrogen Molecules Using Silicon Atoms

Researchers from FEMTO-ST have just demonstrated a novel process for dissociating nitrogen molecules through low-energy footprint processes, a crucial step towards the decarbonized production of high-value-added molecules.

The industrial synthesis of ammonia from nitrogen molecules represents 2% of global energy consumption because this synthesis requires very high pressures and temperatures (200 atmospheres, 600°C). The development of energy-efficient processes for the dissociation of nitrogen molecules is a major challenge for the ecological transition. To develop these types of processes, it is essential to understand the elementary mechanisms that cause the dissociation of these nitrogen molecules. As part of the OVATION project, funded by the National Research Agency, ChimieParisTech and FEMTO-ST have demonstrated that silicon atoms have the ability to dissociate these nitrogen molecules at room temperature and under very low pressures (<1 atmosphere). This result was obtained using a scanning tunneling microscope (STM, link to previous news if possible), which allows the study of the modification of the electronic properties of silicon atoms when exposed to nitrogen molecules.

By adjusting the experimental conditions, the researchers demonstrated that silicon atoms could transfer electrons to nitrogen molecules and thus cause their dissociation. This process is efficient and requires little energy.

After successfully demonstrating a new type of nitrogen molecule dissociation, the second step is to form the ammonia molecule. This requires reacting hydrogen molecules inside the STM microscope, a new scientific challenge for the members of FEMTO-ST's nanosciences group.

Contacts :
Prof. Dr Frank PALMINO
Dr. Fréderic CHERIOUX

This article is highlighted as the cover picture of  ChemPhysChem : https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cphc.202300458

 

  • Does the i-motif structure of DNA exist in the cell?

    As part of an interdisciplinary project involving FEMTO-ST, a new scientific study is reopening the debate on the very existence of these structures in DNA and their potential therapeutic interest in cell biology for the treatment of certain cancers.

    Read more
  • Pink October: A smart bra project

    Zeina Al Masry talks to France 3 TV about her innovative connected bra project for the early detection of breast cancer.

    Read more
  • Vincent Giordano,winner of the EFTF Award 2024

    This award recognises a career spanning more than 35 years of research into frequency metrology, including the development of sapphire oscillators.

    Read more
  • FEMTO-ST celebrates its 20th anniversary

    Surrounded by its co-supervisors and partners, the FEMTO-ST institute celebrated its 20th anniversary on Wednesday 26 June in Besançon.

    Read more
  • John Dudley appointed senior member of the institut universitaire de France

    A member of FEMTO-ST's Optics Department and professor at the University of Franche-Comté, John Dudley has been appointed to a Fundamental Chair in senior category of the Institut Universitaire de France

    Read more
  • Laser nanofabrication: nanopillars emerging from sapphire

    Femtosecond lasers are well known for their ability to cut materials with extreme precision and texture surfaces. A FEMTO-ST team has achieved a world first, opening up a new use for these lasers.

    Read more
  • Best paper award on BIOSEC 2024

    Raniya Ketfi, Zeina Al Masry, and Noureddine Zerhouni have been awarded the Best Paper Prize at the 17th International Joint Conference on Biomedical Engineering Systems and Technologies

    Read more
  • Mayra Yucely Beb Caal awarded "Female Science Talents Intensive Track Champion 2024"

    A PhD student in FEMTO-ST's micro and nanorobotics team, she is one of 20 talented women from 15 countries, each making a significant contribution in their scientific field.

    Read more
  • Two Best Paper awards at Photonics West

    Mathilde Hary and Maxime Romanet win two of the 5 awards for best oral presentations at the world's leading optics-photonics conference

    Read more
  • John Dudley awarded EPS Prize for Research into the Science of Light

    This award – jointly with Goëry Genty from Tampere University – recognizes their pioneering contributions to ultrafast nonlinear fibre optics.

    Read more

Pages