The institute
FEMTO's news

You are here

Kagomé structures for quantum technologies

Quantum technologies open up promising prospects, but require the development of new materials with remarkable properties.

Context :
Kagome graphene is a fascinating material made up of carbon triangles arranged in a lattice structure. Its unique electronic properties, such as the presence of flat bands and Dirac points, make it a promising candidate for quantum materials research. These characteristics can give rise to strong electronic correlations and exotic magnetic states. However, due to its intrinsic semiconducting nature, Kagome graphene lacks tunability under an electric field, limiting its potential for applications in electronics and spintronics.

Breakthrough discovery :
A team of researchers from École Polytechnique de Montréal (Canada), the University of Basel (Switzerland), and FEMTO-ST (France) has successfully modified Kagome graphene by introducing π-radicals, creating localized magnetic states.
Their approach involved synthesizing a carbonyl (C=O)-functionalized version of Kagome graphene, which was then exposed to atomic hydrogen. A subsequent thermal treatment transformed the carbonyl groups into CH radicals, effectively generating unpaired electrons that induce magnetism.
Advanced characterization techniques, including atomic force microscopy (AFM) and scanning tunneling spectroscopy (STS), confirmed the formation of these magnetic states and the emergence of new low-energy electronic states.

Scientific impact and future perspectives :
This study demonstrates that chemical functionalization of Kagome graphene allows the creation of tunable electronic states, opening new possibilities for investigating topology, magnetism, and electron correlations. By increasing the density of radicals, the researchers observed the reappearance of Dirac cones and flat bands near the Fermi level, suggesting that a fully functionalized version of Kagome graphene could become metallic—a breakthrough that was previously challenging to achieve.
These findings lay the foundation for advanced quantum materials with applications in spintronics and quantum computing. Controlling the density and distribution of radicals could lead to nano-scale spin manipulation, a key step toward the development of next-generation electronic devices.
The next phase of research will focus on optimizing the synthesis process to achieve a fully functionalized Kagome graphene, while further exploring the interaction between these new electronic states and phenomena such as superconductivity.

Publications and futher information :
This work has been published in ACS Nano, featuring on the cover of the February 2025 issue
open acess article : On-Surface Synthesis and Characterization of Radical Spins in Kagome Graphene
Authors : Rémy Pawlak, Khalid N. Anindya, Outhmane Chahib, Jung-Ching Liu, Paul Hiret, Laurent Marot, Vincent Luzet, Frank Palmino, Frédéric Chérioux, Alain Rochefort, and Ernst Meyer
DOI: 10.1021/acsnano.4c15519

Contacts :
Dr Frédéric CHERIOUX, frederic.cherioux@femto-st.f
Dr Rémy PAWLAK, remy.pawlak@unibas.ch

  • Vincent Giordano,winner of the EFTF Award 2024

    This award recognises a career spanning more than 35 years of research into frequency metrology, including the development of sapphire oscillators.

    Read more
  • FEMTO-ST celebrates its 20th anniversary

    Surrounded by its co-supervisors and partners, the FEMTO-ST institute celebrated its 20th anniversary on Wednesday 26 June in Besançon.

    Read more
  • John Dudley appointed senior member of the institut universitaire de France

    A member of FEMTO-ST's Optics Department and professor at the University of Franche-Comté, John Dudley has been appointed to a Fundamental Chair in senior category of the Institut Universitaire de France

    Read more
  • Laser nanofabrication: nanopillars emerging from sapphire

    Femtosecond lasers are well known for their ability to cut materials with extreme precision and texture surfaces. A FEMTO-ST team has achieved a world first, opening up a new use for these lasers.

    Read more
  • Best paper award on BIOSEC 2024

    Raniya Ketfi, Zeina Al Masry, and Noureddine Zerhouni have been awarded the Best Paper Prize at the 17th International Joint Conference on Biomedical Engineering Systems and Technologies

    Read more
  • Mayra Yucely Beb Caal awarded "Female Science Talents Intensive Track Champion 2024"

    A PhD student in FEMTO-ST's micro and nanorobotics team, she is one of 20 talented women from 15 countries, each making a significant contribution in their scientific field.

    Read more
  • Two Best Paper awards at Photonics West

    Mathilde Hary and Maxime Romanet win two of the 5 awards for best oral presentations at the world's leading optics-photonics conference

    Read more
  • John Dudley awarded EPS Prize for Research into the Science of Light

    This award – jointly with Goëry Genty from Tampere University – recognizes their pioneering contributions to ultrafast nonlinear fibre optics.

    Read more
  • Michaël Gauthier, new director of FEMTO-ST

    A new team is taking over the management of the institute for a 5-year term starting in January 2024.

    Read more
  • Nadia YOUSFI STEINER awarded the Blondel 2023 medal

    This medal recognizes the decisive contributions of her work on the resilience of fuel cell and hydrogen systems

    Read more

Pages