The institute
FEMTO's news

You are here

Kagomé structures for quantum technologies

Quantum technologies open up promising prospects, but require the development of new materials with remarkable properties.

Context :
Kagome graphene is a fascinating material made up of carbon triangles arranged in a lattice structure. Its unique electronic properties, such as the presence of flat bands and Dirac points, make it a promising candidate for quantum materials research. These characteristics can give rise to strong electronic correlations and exotic magnetic states. However, due to its intrinsic semiconducting nature, Kagome graphene lacks tunability under an electric field, limiting its potential for applications in electronics and spintronics.

Breakthrough discovery :
A team of researchers from École Polytechnique de Montréal (Canada), the University of Basel (Switzerland), and FEMTO-ST (France) has successfully modified Kagome graphene by introducing π-radicals, creating localized magnetic states.
Their approach involved synthesizing a carbonyl (C=O)-functionalized version of Kagome graphene, which was then exposed to atomic hydrogen. A subsequent thermal treatment transformed the carbonyl groups into CH radicals, effectively generating unpaired electrons that induce magnetism.
Advanced characterization techniques, including atomic force microscopy (AFM) and scanning tunneling spectroscopy (STS), confirmed the formation of these magnetic states and the emergence of new low-energy electronic states.

Scientific impact and future perspectives :
This study demonstrates that chemical functionalization of Kagome graphene allows the creation of tunable electronic states, opening new possibilities for investigating topology, magnetism, and electron correlations. By increasing the density of radicals, the researchers observed the reappearance of Dirac cones and flat bands near the Fermi level, suggesting that a fully functionalized version of Kagome graphene could become metallic—a breakthrough that was previously challenging to achieve.
These findings lay the foundation for advanced quantum materials with applications in spintronics and quantum computing. Controlling the density and distribution of radicals could lead to nano-scale spin manipulation, a key step toward the development of next-generation electronic devices.
The next phase of research will focus on optimizing the synthesis process to achieve a fully functionalized Kagome graphene, while further exploring the interaction between these new electronic states and phenomena such as superconductivity.

Publications and futher information :
This work has been published in ACS Nano, featuring on the cover of the February 2025 issue
open acess article : On-Surface Synthesis and Characterization of Radical Spins in Kagome Graphene
Authors : Rémy Pawlak, Khalid N. Anindya, Outhmane Chahib, Jung-Ching Liu, Paul Hiret, Laurent Marot, Vincent Luzet, Frank Palmino, Frédéric Chérioux, Alain Rochefort, and Ernst Meyer
DOI: 10.1021/acsnano.4c15519

Contacts :
Dr Frédéric CHERIOUX, frederic.cherioux@femto-st.f
Dr Rémy PAWLAK, remy.pawlak@unibas.ch

  • Maxence Leveziel wins CNRS robotics thesis award

    His work has led to the development of a miniature robot capable of manipulating micrometric objects at unprecedented speeds.

    Read more
  • Thibaut Sylvestre elected Optica Fellow 2024

    Thibaut is one of the 129 newly elected Optica Fellows, honored for his pioneering contributions to fiber optics and fiber lasers

    Read more
  • New Academic Year for the EIPHI Graduate School

    200 new students join its 16 international master's programs in 2023-2024

    Read more
  • Two best student paper awards for Ishamol Labbaveettil

    Awards for her PhD work on KNbO3 films

    Read more
  • Dissociating Nitrogen Molecules Using Silicon Atoms

    Researchers from FEMTO-ST have just demonstrated a novel process for dissociating nitrogen molecules through low-energy footprint processes, a crucial step towards the decarbonized production of high-value-added molecules.

    Read more
  • DESCROIX-VERNIER ETHICSCIENCE award for Agathe FIGAROL

    An innovative tumor model on a microchip to fight brain cancer

    Read more
  • A novel approach to filling miniature atomic clock cells

    This new method, which gains flexibility, paves the way for large-scale production of atomic sensors.

    Read more
  • National Days on Emerging Technologies in Micro-Nanofabrication

    These scientific days, which take place from November 30 to December 2 in Besançon, France, bring together the major French players in micro-nanotechnologies, process engineering, physics and modeling of manufacturing processes.

    Read more
  • 16th International Symposium on Distributed Autonomous Robotic Systems

    Nearly a hundred scientists from all over the world will meet under the auspices of FEMTO-ST, in Montbéliard from November 28 to 30 to exchange on an interdisciplinary field in full expansion.

    Read more
  • Fei Gao wins the "Sustainable Future Visionary Award"

    Full professor at UTBM and researcher at FEMTO-ST institute, Fei Gao is today one of the world's leading specialists in fuel cells and digital twins.

    Read more

Pages