The institute
FEMTO's news

Comment mesurer et comprendre le mécanisme de déplacement des cellules du système immunitaire

L’objectif de cette collaboration était de développer une nouvelle approche pour mesurer et comprendre le mécanisme des forces impliquées dans le déplacement des cellules du système immunitaire(les macrophages)à travers les tissus de l’organisme, en fonction de la rigidité de leur environnement. Cette connaissance étant un prérequis pour parvenir à contrôler l’infiltration tissulaire de ces cellules dans des situations pathologiques où elles sont amenées à stimuler la progression de la maladie, comme dans le cas du cancer ou des maladies inflammatoires chroniques.

C’est ce à quoi se sont attachés l’équipe dirigée par Isabelle Maridonneau de l’institut de Pharmacologie et de Biologie Structurale (IPBS-CNRS/Université Toulouse II –Paul Sabatier), l’équipe de Christophe Vieu du Laboratoire d’Analyse des Surfaces (LAAS-CNRS) en collaboration avec des chercheurs de la Faculté de Médecine du laboratoire de biologie moléculaire eucaryote de Toulouse, de l’institut FEMTO-ST de Besançon et du Laboratoire Jean Perrin de Paris.

Pour une cellule, sentir la rigidité de son environnement est une propriété fondamentale qui peut influencer ses fonctions, notamment sa différenciation ou sa migration. Or la migration des macrophages à travers les différents tissus de l’organisme est cruciale pour leur activité immunitaire. Mais la façon dont les structures adhérentes de ces macrophages (les podosomes) parviennent à sonder leur environnement, était jusqu’alors inconnue, faute de méthode appropriée.

Les médecins et les chercheurs ont ainsi développé une approche originale consistant à mesurer, à l’échelle nanométrique grâce à la microscopie à force atomique en milieu biologique, les déformations induites par les podosomes des macrophages humains sur un film polymère déformable, épais de quelques dizaines de nanomètres et présentant une très faible rigidité de flexion. En déterminant d’une part les propriétés mécaniques de ce film et en utilisant d’autre part un modèle mécanique adapté à la géométrie de ces structures d’adhérence particulières, ils ont alors pu évaluer l’amplitude des forces impliquées dans le processus d’adhésion, de l’ordre de quelques nanoNewton.

Et c’est dans ce contexte que, Patrick Delobelle du département de Mécanique appliquée de l’institut FEMTO-ST est intervenu pour la caractérisation de ces films élastiques ultra minces, d’épaisseur et de rigidité différentes, ainsi que pour l’élaboration du modèle adéquat permettant d’appréhender l’amplitude des forces générées à partir de la déformée locale de la membrane créée par un podosome.

Globalement, grâce à cette stratégie, ils ont estimé, pour la première fois, les forces développées par des podosomes individuels et démontré que ces forces sont oscillatoires et corrélées à la rigidité du film. Ils ont également déterminé les mécanismes moléculaires impliqués dans la force produite par les podosomes et montré que la polymérisation du cytosquelette d’actine et la contractilité générée par la myosine II jouent un rôle majeur. Enfin, un modèle théorique reposant sur un équilibre entre ces deux générateurs de force permet de proposer une explication au comportement oscillatoire des podosomes.

Ce travail fruit d’une véritable collaboration interdisciplinaire constitue une avancée majeure et a été est publié dans la revue Nature Communications le 11 novembre 2014

  • [FOCUS LAB' #2] Peut-on transformer une souris verte en escargot ?

    Découvrez la réponse en images...

    Read more
  • Un problème ouvert résolu en informatique : une réduction efficace de la taille de systèmes

    Gérard Cécé du département DISC/FEMTO-ST a présenté lors de la conférence LICS'17, les fondations d'une série d'algorithmes efficaces du calcul de la plus grande relation de simulation d'un système.

    Read more
  • Trouver de nouveaux débouchés aux matériaux biosourcés

    Dans le cadre d’un projet européen H2020, FEMTO-ST, en lien avec 16 autres partenaires issus de 6 pays européens, ambitionne d'élargir les débouchés des matériaux biosourcés en développant des démonstrateurs pour les secteurs technologiques de pointe tels que notamment le transport terrestre et aérien.
    Le lancement du projet,en présence de l'ensemble des partenaires, a eu lieu mardi 12 septembre dans le locaux de l'institut.

    Read more
  • Une nano-antenne pour imager et caractériser des sources de photons uniques infrarouges

    Bien que produits par milliards, les quantum-dots restent des sources lumineuses nanométriques difficiles à détecter et caractériser individuellement, en particulier quand elles émettent dans l’infrarouge. Des chercheurs de FEMTO-ST ont développé pour cela une nano-antenne intégrée sur fibre optique. Ces travaux ont été publiés dans la revue Nano Letters.

    Read more
  • Tout savoir sur l’auto-organisation de molécules sur silicium

    L’équipe Nanosciences de FEMTO-ST et une équipe de l’IEMN publient une revue exhaustive sur l’auto-organisation sur surface de silicium.

    Read more
  • AFULudine récompensée au concours I-LAB 2017

    AFULudine (start-up issue entre autres des recherches de FEMTO-ST) est lauréate du concours I-LAB 2017, dans la catégorie « Chimie & environnement ».

    Read more
  • [FOCUS LAB'] Peut-on fabriquer un violon avec des céréales ?

    Découvrez la réponse en images...

    Read more
  • Best Presentation Award à ICEMS'17

    Frédéric Dubas, équipe SHARPAC/FEMTO-ST, s'est vu décerner le prix "Best Presentation Award" lors de la 19ème International Conference on Electrical Machines and Systems qui s'est tenue les 7 et 8 juin à San Francisco

    Read more
  • FEMTO-ST remporte deux prix au salon Economia

    Youssef Tejda et Aliyasin El Ayouch remportent deux prix lors du salon Economia pour leurs travaux sur les métamatériaux acoustiques.

    Read more
  • WOMBAT 2017

    Après une première édition à Sydney en 2015,le second Workshop on Optomechanics and Brillouin Scattering: Fundamentals, Applications and Technologies aura lieu à Besançon.

    Read more