The institute
FEMTO's news

Does the i-motif structure of DNA exist in the cell?

As part of an interdisciplinary project involving FEMTO-ST, a new scientific study is reopening the debate on the very existence of these structures in DNA and their potential therapeutic interest in cell biology for the treatment of certain cancers.

More than 60 years ago, the double helix structure of DNA was discovered and was to have a major impact on molecular biology research for decades to come. In recent years, however, other DNA structures have aroused the enthusiasm of researchers, in particular tetrameric structures such as G-quadruplexes (G4s) and i-patterns.

G4s, consisting of a stack of guanine tetrads, are obtained when the DNA sequence is rich in guanines. The presence of these G4 structures has been demonstrated for many years and they are an avenue being explored for the treatment of cancers. If one strand is guanine-rich, its complementary strand is cytosine-rich. It has been shown in vitro that these cytosine-rich sequences are also capable under acidic conditions (pH<6) of folding into tetrameric structures to form i-motifs.

However, the formation of these i-motif structures within cells is highly controversial due to the need for an acidic pH. Recently, an Australian team developed a new antibody (i-Mab) to detect the presence of i-motif DNA at cellular level and thus prove its presence.

This article, published in ‘Nucleic Acids Research’, presents a new study of the recognition properties of this i-Mab antibody and calls into question previous conclusions. The researchers re-evaluated the recognition properties of this antibody at acidic and physiological pH, supplementing them in particular with a study of other oligonucleotides rich in cytosine but not forming an i-motif. They demonstrated that the i-Mab antibody not only recognised the i-motif conformation but also other sequences rich in cytosine but unable to form an i-motif. More specifically, the results suggest that the binding of iMab to oligonucleotides is governed by the presence of at least two consecutive cytosines. In addition, FRET analyses indicate that interaction with iMab results in unfolding of the i-motif structures even under acidic conditions, in a manner similar to that observed with hnRNP K, a single-stranded DNA-binding protein.
The results strongly suggest that the iMab antibody binds to blocks of 2 to 3 cytosines in single-stranded DNA and call for a more cautious interpretation of the results obtained with this antibody.

This work was carried out as part of the ANR ICARE (ANR-21-CE44-0005) and PRIME'80 programmes, involving researchers from the Department of Molecular Chemistry (CNRS/University of Grenoble Alpes) in close collaboration with the Institut Curie (CNRS/Paris Saclay), the Institute of Pharmacology and Structural Biology (CNRS/University of Toulouse) and the FEMTO-ST Institute (CNRS/University of Bourgogne-Franche-Comté).

This publication (https://doi.org/10.1093/nar/gkae531) a was the subject of an article in  CNRS chimie

Contact FEMTO-ST : Jérôme Dejeu

 

Award
  • RENATECH 2024 PhD AWARD

    Adria Grabulosa is rewarded for his work on 3D printed circuits using an original two-photon optical additive manufacturing technique.

    Read more
  • Elsevier article award at BFAS 2024

    Artificial intelligence applied to the electroerosion machining process : Loïc Guiziou1, Emmanuel Ramasso1, Sébastien Thibaud1 et Sébastien Denneulin2 won second prize for best paper at the 8th International Conference on Belief Functions.

    Read more
  • Tribute to our colleague Sarah Benchabane

    The CNRS and the university community of Bourgogne Franche-Comté are in mourning following the death of Sarah Benchabane, Director of Research at the CNRS and internationally renowned researcher in phononics, affiliated to the FEMTO-ST laboratory.

    Read more
  • Lancement du projet européen FEDER régionalisé BioIMP

    Une alliance des experts de la santé et des microtechniques pour optimiser la fabrication des biomédicaments.

    Read more
  • Pink October: A smart bra project

    Zeina Al Masry talks to France 3 TV about her innovative connected bra project for the early detection of breast cancer.

    Read more
  • Vincent Giordano,winner of the EFTF Award 2024

    This award recognises a career spanning more than 35 years of research into frequency metrology, including the development of sapphire oscillators.

    Read more
  • Electronique moléculaire : un nouveau regard sur l’organisation des molécules ioniques

    Des scientifiques de l’Institut de chimie de Strasbourg et de FEMTO-ST ont développé une méthode innovante permettant d’améliorer la caractérisation des interfaces ioniques à l’échelle nanométrique, et ainsi d’analyser de nouveaux matériaux pressentis pour s’insérer dans la prochaine génération d

    Read more
  • Ondes de spin optiques, un nouvel état de la lumière

    Les états magnétiques présents dans la matière sont une source d’inspiration pour imaginer de nouveaux états de la lumière. Une équipe de l’institut FEMTO-ST a conçu puis créé un équivalent optique des ondes dites « de spin » se propageant dans les aimants.

    Read more
  • FEMTO-ST celebrates its 20th anniversary

    Surrounded by its co-supervisors and partners, the FEMTO-ST institute celebrated its 20th anniversary on Wednesday 26 June in Besançon.

    Read more
  • Eric MAZUR (Harvard Université) en conférence à FEMTO-ST

    Professeur à l'Université de Harvard, ce scientifique de renommée internationale dans le domaine des  interactions ultrarapides entre la lumière et la matière et la science des matériaux  est intervenu dans nos locaux ce vendredi 21 Juin.

    Read more