The institute
FEMTO's news

You are here

Does the i-motif structure of DNA exist in the cell?

As part of an interdisciplinary project involving FEMTO-ST, a new scientific study is reopening the debate on the very existence of these structures in DNA and their potential therapeutic interest in cell biology for the treatment of certain cancers.

More than 60 years ago, the double helix structure of DNA was discovered and was to have a major impact on molecular biology research for decades to come. In recent years, however, other DNA structures have aroused the enthusiasm of researchers, in particular tetrameric structures such as G-quadruplexes (G4s) and i-patterns.

G4s, consisting of a stack of guanine tetrads, are obtained when the DNA sequence is rich in guanines. The presence of these G4 structures has been demonstrated for many years and they are an avenue being explored for the treatment of cancers. If one strand is guanine-rich, its complementary strand is cytosine-rich. It has been shown in vitro that these cytosine-rich sequences are also capable under acidic conditions (pH<6) of folding into tetrameric structures to form i-motifs.

However, the formation of these i-motif structures within cells is highly controversial due to the need for an acidic pH. Recently, an Australian team developed a new antibody (i-Mab) to detect the presence of i-motif DNA at cellular level and thus prove its presence.

This article, published in ‘Nucleic Acids Research’, presents a new study of the recognition properties of this i-Mab antibody and calls into question previous conclusions. The researchers re-evaluated the recognition properties of this antibody at acidic and physiological pH, supplementing them in particular with a study of other oligonucleotides rich in cytosine but not forming an i-motif. They demonstrated that the i-Mab antibody not only recognised the i-motif conformation but also other sequences rich in cytosine but unable to form an i-motif. More specifically, the results suggest that the binding of iMab to oligonucleotides is governed by the presence of at least two consecutive cytosines. In addition, FRET analyses indicate that interaction with iMab results in unfolding of the i-motif structures even under acidic conditions, in a manner similar to that observed with hnRNP K, a single-stranded DNA-binding protein.
The results strongly suggest that the iMab antibody binds to blocks of 2 to 3 cytosines in single-stranded DNA and call for a more cautious interpretation of the results obtained with this antibody.

This work was carried out as part of the ANR ICARE (ANR-21-CE44-0005) and PRIME'80 programmes, involving researchers from the Department of Molecular Chemistry (CNRS/University of Grenoble Alpes) in close collaboration with the Institut Curie (CNRS/Paris Saclay), the Institute of Pharmacology and Structural Biology (CNRS/University of Toulouse) and the FEMTO-ST Institute (CNRS/University of Bourgogne-Franche-Comté).

This publication (https://doi.org/10.1093/nar/gkae531) a was the subject of an article in  CNRS chimie

Contact FEMTO-ST : Jérôme Dejeu

 

Award
  • March 8, International Women's Day

    "Freedom, like Science, and Women's Rights, are fundamental issues for Humanity."

    FEMTO-ST chooses to display on this day of March 8 (also charged with the serious news of the war in Ukraine), its commitment to each of these three issues.

    Read more
  • First experimental observation of the roton effect in metamaterials

    Experiments conducted jointly by FEMTO-ST and KIT demonstrate the control of forward and backward wave propagation by adjusting the frequency.

    Read more
  • FEMTO-ST partner of the Joint Technology Unit "CAPPLAI"

    For the development of sensors to control and optimize the performance of dairy processes.                                                                                     

    Read more
  • Happy new year 2022 !

    The Management and all the members of FEMTO-ST wish you a year 2022 full of personal and professional satisfactions

    Read more
  • Safa MERAGHNI receives the PEPITE prize in the regional "Female Initiative " competition

    Her project is to create a "Smart Medical Assistant" which is an intelligent medical assistance device on a smartphone designed to help doctors in their diagnosis.

    Read more
  • IEEE ICEMS Conference : Best paper award

    Researchers from SHARPAC team/ENERGY department of FEMTO-ST institute received the Best Paper Award at the IEEE International Conference on Electrical Machines and Systems for their work on the influence of electrical conductivity on eddy-current losses in electrical machines.

    Read more
  • Joint laboratories CNRS-Companies 2021

    FEMTO-ST and AUREA Technology honored at the LAB COM CNRS event in Paris on November 29 and 30

    Read more
  • Nanorobotics of the future: FEMTO-ST enters the 4th dimension

    For the first time, nanorobotic structures have been realized by folding in 3 dimensions a multilayer membrane and proposing their actuation by an electro-thermo mechanical principle.

    Read more
  • Chaos and rogue waves in a supercontinuum laser

    In collaboration with the Universities of Tampere, Aston and ICB laboratory, FEMTO-ST researchers have made significant headway in the ongoing effort to understand the ultrafast chaotic nature of lasers, elucidating for the first time their noise-like pulse operation.

    Read more
  • Julio Andrés Iglesias Martínez receives the Best Student Award at IEEE Ultrasonic Symposium

    His work consists in achieving three-dimensional phononic crystals at the micro-scale with record band-gap width.

    Read more

Pages