The institute
FEMTO's news

You are here

Kagomé structures for quantum technologies

Quantum technologies open up promising prospects, but require the development of new materials with remarkable properties.

Context :
Kagome graphene is a fascinating material made up of carbon triangles arranged in a lattice structure. Its unique electronic properties, such as the presence of flat bands and Dirac points, make it a promising candidate for quantum materials research. These characteristics can give rise to strong electronic correlations and exotic magnetic states. However, due to its intrinsic semiconducting nature, Kagome graphene lacks tunability under an electric field, limiting its potential for applications in electronics and spintronics.

Breakthrough discovery :
A team of researchers from École Polytechnique de Montréal (Canada), the University of Basel (Switzerland), and FEMTO-ST (France) has successfully modified Kagome graphene by introducing π-radicals, creating localized magnetic states.
Their approach involved synthesizing a carbonyl (C=O)-functionalized version of Kagome graphene, which was then exposed to atomic hydrogen. A subsequent thermal treatment transformed the carbonyl groups into CH radicals, effectively generating unpaired electrons that induce magnetism.
Advanced characterization techniques, including atomic force microscopy (AFM) and scanning tunneling spectroscopy (STS), confirmed the formation of these magnetic states and the emergence of new low-energy electronic states.

Scientific impact and future perspectives :
This study demonstrates that chemical functionalization of Kagome graphene allows the creation of tunable electronic states, opening new possibilities for investigating topology, magnetism, and electron correlations. By increasing the density of radicals, the researchers observed the reappearance of Dirac cones and flat bands near the Fermi level, suggesting that a fully functionalized version of Kagome graphene could become metallic—a breakthrough that was previously challenging to achieve.
These findings lay the foundation for advanced quantum materials with applications in spintronics and quantum computing. Controlling the density and distribution of radicals could lead to nano-scale spin manipulation, a key step toward the development of next-generation electronic devices.
The next phase of research will focus on optimizing the synthesis process to achieve a fully functionalized Kagome graphene, while further exploring the interaction between these new electronic states and phenomena such as superconductivity.

Publications and futher information :
This work has been published in ACS Nano, featuring on the cover of the February 2025 issue
open acess article : On-Surface Synthesis and Characterization of Radical Spins in Kagome Graphene
Authors : Rémy Pawlak, Khalid N. Anindya, Outhmane Chahib, Jung-Ching Liu, Paul Hiret, Laurent Marot, Vincent Luzet, Frank Palmino, Frédéric Chérioux, Alain Rochefort, and Ernst Meyer
DOI: 10.1021/acsnano.4c15519

Contacts :
Dr Frédéric CHERIOUX, frederic.cherioux@femto-st.f
Dr Rémy PAWLAK, remy.pawlak@unibas.ch

  • « Micron d’or » Award at the international microtechnology trade fair

    For one of the most dexterous miniature robots with 7 degrees of freedom, allowing micromanipulation and microassembly in extremely confined spaces

    Read more
  • nanofis de polymères

    Polymer-based nanowires

    Molecules, salt and light :  an easy recipe to provide giant nanowires !

    Read more
  • Discussions about good practices around smart specialization

    In the frame of the 2014-2020 programming of the European Regional Development Funds (ERDF), the European Union has asked all the regions of Europe to draw up a "Smart Specialization Strategy" for research and innovation on their own territory: this is the S3.

    Read more
  • Optical Neural Networks start to learn...

    Work is actively in progress at FEMTO-ST in order to design the photonic architectures dedicated to our future processors that will be computing through artificial intelligence concepts.

    Read more
  • When the light is directed by its magnetic field

    FEMTO-ST researchers have discovered a new optical magnetic interaction to direct light fluxes. These works are published in the journal Light: Science and Applications
    Read more
  • Amar Nath Ghosh awarded at OSA Advanced Photonics Congress

    Amar Nath Ghosh won the Best student paper award of the OSA Advanced Photonics Congress , Zurich.

    Read more
  • Focus on the innovations of the "hydrogen-energy systems" sector

    A few days after the announcement by the government of the launch of a major national hydrogen plan, the Femto-ST institute is organizing on 20 June 2018 at the FCLAB in Belfort, a focus on innovations in the "hydrogen energy systems" sector.

    Read more
  • Robotic assembly of the smallest house in the world

    the handling and assembly capabilities of nanocomponents of the "μRobotex" platform make the buzz on the net and in the international press through the origami manufacturing of a micro-house at the end of an optical fiber whose dimensions are less than the diameter of a hair.

    Read more
  • Nicolas Andreff, receives the scientific award "Charles Defforey" from -Institut de France Foundation

    Awarded May 30 under the Dome of the “ (Institut de France) " by Jean-Paul Laumond, a member of the Academy of Sciences, this Grand Prize crowns the work & skills of Nic

    Read more
  • International Day of Light 2018

    Following the success of the International Year of Light, which highlighted the importance of light-based science and technology and generated more than 13,000 activities in 147 countries, UNESCO proclaimed May 16 as the International Day of Light.

    Read more

Pages