The institute
FEMTO's news

You are here

Imaging quantum interference of entangled photon pairs of extremely high dimensionality

Researchers from the Optics Department have developed an imaging device allowing the spatial and temporal resolution of the phenomenon of quantum interference between pairs of entangled photons of extremely high dimensionality. This work paves the way for the development of very high dimensional information protocols.

In a crystal, photons of a laser beam can split in pairs of lower frequency, the spontaneous down conversion (SPDC) phenomenon. The so-called twin, or entangled, photons of a pair form a single quantum object. Therefore, if they are sent on a beam-splitter they exit randomly, but both on the same output port. This is the famous Hong-Ou-Mandel (HOM) two-photon interference.

HOM interference is used in novel communication protocols, like quantum teleportation and quantum information processing, but until now without spatial resolution, by using bucket detectors. However, entanglement concerns all properties of twin photons, including their position in space and time, and here HOM interference is obtained for thousands of spatial as well temporal resolution cells, resulting in a total spatio-temporal dimensionality of 3 million.

In our HOM interferometer, spatial coincidences at the output ports are imaged on two cameras operating in photon counting mode. Since we control temporally, spatially, in polarization and in wavelength the indistinguishability between the photons of a pair, we have observed and quantified spatially and temporally the HOM interference at the quantum level, with a visibility of 60%, of more than 4000 photon pairs of extremely large spatio-temporal dimensionality.

Given the essential role played by two-photon HOM interference in most of the systems developed for quantum information processing, demonstrating that HOM interference can be obtained by manipulating quantum states of giant dimensionality opens the way for the development of very high-dimensional quantum information protocols using space and time variables.

This work has just been published in the journal Physical Review X and is highlighted in the CNRS news

Contact : Fabrice Devaux

Référence :

Imaging spatio-temporal Hong-Ou-Mandel interference of biphoton state of extremely high Schmidt number, F. Devaux, A. Mosset P.A. Moreau, et E.Lantz .
Physical Review X, 2020.
DOI : 10.1103/PhysRevX.10.031031

  • Tribute to Frédéric THIEBAUD

    The academic community has lost a valued colleague and friend,full professor at Marie and Louis Pasteur University and researcher at FEMTO-ST in materials science.

    Read more
  • Michel de Labachelerie receives the Legion of honor

    National recognition for this CNRS scientist, a specialist in micro and nanotechnologies, who has contributed significantly to the structuring of national and regional research as founder and first Director of the FEMTO-ST institute.

    Read more
  • Launch of the European i-Nano-T project

    The Bourgogne Franche-Comté region is banking on regional scientific and industrial synergy to drive innovation in nanomedicine.

    Read more
  • National Hydrogen Thesis Award for Clotilde ROBERT!

    This award recognizes her work on optimizing hydrogen-powered electric powertrains using a novel approach that combines technological performance, environmental sustainability, and social responsibility.

    Read more
  • I-PhD Innovation competition : Two winners from FEMTO-ST in 2025

    Valentin Reynaud (microforce metrology) andGaultier Gibey (predictive maintenance of hydrogen sytems) are the winners of this sixth edition of the national innovation competition .

    Read more
  • ZETA-SE : A new start-up born out of the work of FEMTO-ST

    Founded in late July 2025, the company offers customized anti-vibration solutions for industry.

    Read more
  • RÉESPIRATION Project: When art breathes to the rhythm of science and medicine

    An interactive work of art born of an unprecedented dialogue between artists, carers and researchers to raise awareness of breathing and its calming power

    Read more
  • Fiber optic sensors: a technological leap thanks to quantum photon counting

    Researchers at FEMTO-ST have extended the range of fiber-optic temperature sensors to 150 kilometers, using photonic detection technology derived from quantum physics.

    Read more
  • Two FEMTO-ST PhD students win awards at the IFCS-EFTF 2025 international conference

    Their innovative work paves the way for new environmental monitoring devices and a new generation of atomic micro-clocks.

    Read more
  • Detecting hydrocarbon pollutants in groundwater

    A major environmental and health challenge taken up by FEMTO-ST researchers working with TotalEnergies

    Read more

Pages