The institute
FEMTO's news

You are here

Imaging quantum interference of entangled photon pairs of extremely high dimensionality

Researchers from the Optics Department have developed an imaging device allowing the spatial and temporal resolution of the phenomenon of quantum interference between pairs of entangled photons of extremely high dimensionality. This work paves the way for the development of very high dimensional information protocols.

In a crystal, photons of a laser beam can split in pairs of lower frequency, the spontaneous down conversion (SPDC) phenomenon. The so-called twin, or entangled, photons of a pair form a single quantum object. Therefore, if they are sent on a beam-splitter they exit randomly, but both on the same output port. This is the famous Hong-Ou-Mandel (HOM) two-photon interference.

HOM interference is used in novel communication protocols, like quantum teleportation and quantum information processing, but until now without spatial resolution, by using bucket detectors. However, entanglement concerns all properties of twin photons, including their position in space and time, and here HOM interference is obtained for thousands of spatial as well temporal resolution cells, resulting in a total spatio-temporal dimensionality of 3 million.

In our HOM interferometer, spatial coincidences at the output ports are imaged on two cameras operating in photon counting mode. Since we control temporally, spatially, in polarization and in wavelength the indistinguishability between the photons of a pair, we have observed and quantified spatially and temporally the HOM interference at the quantum level, with a visibility of 60%, of more than 4000 photon pairs of extremely large spatio-temporal dimensionality.

Given the essential role played by two-photon HOM interference in most of the systems developed for quantum information processing, demonstrating that HOM interference can be obtained by manipulating quantum states of giant dimensionality opens the way for the development of very high-dimensional quantum information protocols using space and time variables.

This work has just been published in the journal Physical Review X and is highlighted in the CNRS news

Contact : Fabrice Devaux

Référence :

Imaging spatio-temporal Hong-Ou-Mandel interference of biphoton state of extremely high Schmidt number, F. Devaux, A. Mosset P.A. Moreau, et E.Lantz .
Physical Review X, 2020.
DOI : 10.1103/PhysRevX.10.031031

  • Mengjia Wang receives the « Chinese government award 2020 »

    As a PhD student of the Optics Department of FEMTO-ST , Mengjia Wang has been recognized by the Chinese Government for his outstanding work in the field of nanophotonics and plasmonics.

    Read more
  • Laurent LARGER named Fellow 2021 of OSA

    Full professor of Physics/Optics at the University of Franche-Comté and researcher at FEMTO-ST institute, Laurent Larger is rewarded for his pioneering work on nonlinear dynamics in optoelectronics and on the development of new architectures for photonic artificial intelligence.

    Read more
  • CNRS "Proof by Image" competition

     Discover the selection of the 20 images selected by the CNRS, one of which is presented by FEMTO-ST, and vote for the "audience award" photo.

    Read more
  • Fei GAO Receives IEEE J.D. Irwin Early Career Award

    As a member of the SHARPAC team and Deputy Director of FEMTO-ST, Fei Gao has been recognized by the IEEE IES Society for his outstanding work in improving the reliability of hydrogen electric powertrains.

    Read more
  • Daniel HISSEL, winner of the CNRS 2020 Innovation Medal

    Full professor at the University of Franche-Comté, researcher at FEMTO-ST Institute and co-founder of a start-up on efficient hydrogen fuel cells, Daniel HISSEL is one of the four national winners of the CNRS 2020 Innovation Medal.

    Read more
  • A new source of infrared light thanks to fibre optic cascades

    Scientists from  FEMTO-ST Institute and McGill University (Montreal, Canada) have designed and developed in collaboration with three French companies a light source covering the entire mid-infrared wavelength range: from 2 to 10 µm.

    Read more
  • Topological crystals to guide waves on the water surface

    Topological crystals have the property of being conductive on their surface, but insulating in their volume which allows very efficient wave guidance by engineering the structure of these materials, generally arranged in a hexagonal symmetry, inspired by the graphene.

    Read more
  • An innovative solution to detect pollutants in the subsoil

    Researchers from FEMTO-STinstitute and the company TOTAL SA have succeeded in detecting organic pollutants with methods that did not require sampling and have been able to monitor the evolution of the pollution of the subsoil over periods ranging up to several years.

    Read more
  • FEMTO-ST is closed

    Within the framework of Coronavirus (COVID-19) epidemic and  following the measures announced by the President of the French Republic,  all the premises of our laboratory in Besançon, Belfort and Montbéliard cities are closed to the public from this Tuesday March 17.

    Read more
  • I-PhD Innovation Competition: 2 winners from FEMTO-ST

    Maya Geagea (ANIO-PAC project: micro fuel cells), and Gaël Matten (VIBISCUS project: noise reduction system), special jury prize, are winners of the 2019 innovation awards.

    Read more

Pages