The institute
FEMTO's news

You are here

A new source of infrared light thanks to fibre optic cascades

Scientists from  FEMTO-ST Institute and McGill University (Montreal, Canada) have designed and developed in collaboration with three French companies a light source covering the entire mid-infrared wavelength range: from 2 to 10 µm. This work, which is published in Laser and Photonics Reviews , opens up applications in spectrometry and biomedical imaging.

See the CNRS article

Fiber-based supercontinuum1 (SC) light sources have become enormously useful in the last decade for a wide range of industrial and scientific applications. New uses are constantly emerging due to their unique optical properties that combine high brightness, multi-octave frequency bandwidth, inherently fiber delivery and single-mode output. Applications include optical coherence tomography (OCT), material processing, chemical sensing, gas monitoring, broadband imaging, and absorption spectroscopy. State-of-the-art SC lasers are based on silica-glass microstructured optical fibers, providing watts of output power over the bandwidth 0.4-2 µm. However, many applications such as detection of chemical and biological species would benefit from extending the SC spectrum beyond the state-of-the-art, in particular towards the mid-infrared (IR) range. This currently motivates significant research effort focused on extending the wavelength coverage towards the 2 to 20 µm molecular fingerprint region.

Various infrared soft glasses based on chalcogenide, tellurite, telluride, heavy-metal oxide and fluoride have been used for drawing highly nonlinear fibers for the mid-infrared, and experiments have shown efficient mid-IR SC generation up to 14 µm in chalcogenide optical fibers and up to 16 µm in telluride fibers. However, most of these mid-IR SC sources have been demonstrated using bulky and expensive mid-IR pump sources such as optical parametric oscillators and amplifiers, making them impractical for most abovementioned applications.

Now writing in Laser and Photonics Reviews, S. Venck and coworkers (SelenOptics) report a compact all-fiber cascaded system which provides a supercontinuum emission spanning the entire 2-10 µm mid-infrared range, thus offering a new reliable laser solution for molecular spectroscopy, remote sensing, optical coherence tomography, and hyperspectral imaging. To get this broad continuous spectrum, they developed a more practical and elegant solution based on a cascaded silica-fluoride-chalcogenide fiber system directly pumped by a compact pulsed fiber laser at a wavelength of 1.55 µm. The initial laser spectrum was progressively broadened and redshifted in the three cascaded fibers through nonlinear optical effects, enabling a stepwise extension towards the mid-infrared. This all-fiber system was shown to generate a nearly flat broadband mid-infrared continuous spectrum from 2 µm to 10 µm (See Figure 1), the upper transmission limit of the chalcogenide fiber, with several tens of milliwatts of output power.

T.Sylvestre (FEMTO-ST), who managed the project with SelenOptics, says argues:“This simple technique paves the way for low cost, practical, and robust broadband sources for mid-IR sensing and spectroscopy. Nothing expect the synchrotron radiation can give wider bandwidth”. The authors further describe in their paper a fully-realistic numerical model used to design the fibers and to simulate the nonlinear pulse propagation through the cascaded fiber system and they use numerical results to discuss and optimize the physical processes underlying the spectral broadening in the cascaded system. The teams concur that their mid-infrared supercontinuum source is now ready for commercialization and they are working on ways forward.

This work involves researchers from the FEMTO-ST institute, The McGill University in Montréal (Canada) and three French companies ( SelenOptics, Le Verre Fluoré, Leukos) and is the result of a European H2020 Marie-Curie ITN project under grant agreement 722328, managed by CNRS.

Contact : Thibaut Sylvestre

  • Topological crystals to guide waves on the water surface

    Topological crystals have the property of being conductive on their surface, but insulating in their volume which allows very efficient wave guidance by engineering the structure of these materials, generally arranged in a hexagonal symmetry, inspired by the graphene.

    Read more
  • An innovative solution to detect pollutants in the subsoil

    Researchers from FEMTO-STinstitute and the company TOTAL SA have succeeded in detecting organic pollutants with methods that did not require sampling and have been able to monitor the evolution of the pollution of the subsoil over periods ranging up to several years.

    Read more
  • FEMTO-ST is closed

    Within the framework of Coronavirus (COVID-19) epidemic and  following the measures announced by the President of the French Republic,  all the premises of our laboratory in Besançon, Belfort and Montbéliard cities are closed to the public from this Tuesday March 17.

    Read more
  • I-PhD Innovation Competition: 2 winners from FEMTO-ST

    Maya Geagea (ANIO-PAC project: micro fuel cells), and Gaël Matten (VIBISCUS project: noise reduction system), special jury prize, are winners of the 2019 innovation awards.

    Read more
  • Sarah Benchabane winner of an ERC Consolidator grant 2019

    CNRS Research Fellow at the FEMTO-ST Institute, Sarah is awarded with a prestigious €2M European Research Council (ERC) grant for her  project : Nanophonics for Quantum Information Processing.

    Read more
  • Stardust Odyssey : A new world record !

    Discover the smallest volume character ever animated in stop-motion (frame by frame) through a short film made thanks to FEMTO-ST's high-tech robotic equipments and researchers.

    Read more
  • Final report of the DATAZERO project

    A national project to design and manage medium power data centers powered exclusively by renewable energy sources

    Read more
  • Vladimir GAUTHIER is national winner of the PEPITE competition for young creators of innovative companies

    Entrepreneurial PhD at FEMTO-ST, Vladimir Gauthier is developing a company project on the microrobotic sorting of biological cells, which has received national price !

    Read more
  • Two young regional researchers awarded by the CNRS bronze medal

    Aude Bolopion (microrobotics) and Nadia Yousfi-Steiner (electrical engineering), two young researchers from FEMTO-ST Institute, were awarded by the CNRS bronze medal for their contribution to the advancement of French research.

    Read more
  • Secure and certify time

    Inauguration on Tuesday, July 9 of a joint laboratory between FEMTO-ST and Gorgy Timing to develop secure and certified time and frequency broadcasting systems for wireless and computer networks.

    Read more