The institute
FEMTO's news

You are here

A new source of infrared light thanks to fibre optic cascades

Scientists from  FEMTO-ST Institute and McGill University (Montreal, Canada) have designed and developed in collaboration with three French companies a light source covering the entire mid-infrared wavelength range: from 2 to 10 µm. This work, which is published in Laser and Photonics Reviews , opens up applications in spectrometry and biomedical imaging.

See the CNRS article

Fiber-based supercontinuum1 (SC) light sources have become enormously useful in the last decade for a wide range of industrial and scientific applications. New uses are constantly emerging due to their unique optical properties that combine high brightness, multi-octave frequency bandwidth, inherently fiber delivery and single-mode output. Applications include optical coherence tomography (OCT), material processing, chemical sensing, gas monitoring, broadband imaging, and absorption spectroscopy. State-of-the-art SC lasers are based on silica-glass microstructured optical fibers, providing watts of output power over the bandwidth 0.4-2 µm. However, many applications such as detection of chemical and biological species would benefit from extending the SC spectrum beyond the state-of-the-art, in particular towards the mid-infrared (IR) range. This currently motivates significant research effort focused on extending the wavelength coverage towards the 2 to 20 µm molecular fingerprint region.

Various infrared soft glasses based on chalcogenide, tellurite, telluride, heavy-metal oxide and fluoride have been used for drawing highly nonlinear fibers for the mid-infrared, and experiments have shown efficient mid-IR SC generation up to 14 µm in chalcogenide optical fibers and up to 16 µm in telluride fibers. However, most of these mid-IR SC sources have been demonstrated using bulky and expensive mid-IR pump sources such as optical parametric oscillators and amplifiers, making them impractical for most abovementioned applications.

Now writing in Laser and Photonics Reviews, S. Venck and coworkers (SelenOptics) report a compact all-fiber cascaded system which provides a supercontinuum emission spanning the entire 2-10 µm mid-infrared range, thus offering a new reliable laser solution for molecular spectroscopy, remote sensing, optical coherence tomography, and hyperspectral imaging. To get this broad continuous spectrum, they developed a more practical and elegant solution based on a cascaded silica-fluoride-chalcogenide fiber system directly pumped by a compact pulsed fiber laser at a wavelength of 1.55 µm. The initial laser spectrum was progressively broadened and redshifted in the three cascaded fibers through nonlinear optical effects, enabling a stepwise extension towards the mid-infrared. This all-fiber system was shown to generate a nearly flat broadband mid-infrared continuous spectrum from 2 µm to 10 µm (See Figure 1), the upper transmission limit of the chalcogenide fiber, with several tens of milliwatts of output power.

T.Sylvestre (FEMTO-ST), who managed the project with SelenOptics, says argues:“This simple technique paves the way for low cost, practical, and robust broadband sources for mid-IR sensing and spectroscopy. Nothing expect the synchrotron radiation can give wider bandwidth”. The authors further describe in their paper a fully-realistic numerical model used to design the fibers and to simulate the nonlinear pulse propagation through the cascaded fiber system and they use numerical results to discuss and optimize the physical processes underlying the spectral broadening in the cascaded system. The teams concur that their mid-infrared supercontinuum source is now ready for commercialization and they are working on ways forward.

This work involves researchers from the FEMTO-ST institute, The McGill University in Montréal (Canada) and three French companies ( SelenOptics, Le Verre Fluoré, Leukos) and is the result of a European H2020 Marie-Curie ITN project under grant agreement 722328, managed by CNRS.

https://doi.org/10.1002/lpor.202000011

Contact : Thibaut Sylvestre

  • Best student paper Award for Clément Carlé at the international conférence IFCS-EFTF2022

    This award was obtained in the "Microwave Frequency Standards" category of this major international conference in the field of time-frequency metrology, which took place in Paris from 24 to 28 April 2022.

    Read more
  • Daniel BRUNNER winner of an ERC Consolidator grant 2021

    Daniel BRUNNER is a CNRS researcher at the FEMTO-ST Institute and has been awarded a prestigious European Research Council Cosolidator Grant of 2M € for his INSPIRE project

    Read more
  • Daniel HISSEL awarded as « Fellow » of the IEEE society

    Professor in Electrical Engineering at the University of Franche-Comté and researcher at FEMTO-ST, Daniel Hissel has been awarded as  for his work on hydrogen systems.

    Read more
  • March 8, International Women's Day

    "Freedom, like Science, and Women's Rights, are fundamental issues for Humanity."

    FEMTO-ST chooses to display on this day of March 8 (also charged with the serious news of the war in Ukraine), its commitment to each of these three issues.

    Read more
  • First experimental observation of the roton effect in metamaterials

    Experiments conducted jointly by FEMTO-ST and KIT demonstrate the control of forward and backward wave propagation by adjusting the frequency.

    Read more
  • FEMTO-ST partner of the Joint Technology Unit "CAPPLAI"

    For the development of sensors to control and optimize the performance of dairy processes.                                                                                     

    Read more
  • Happy new year 2022 !

    The Management and all the members of FEMTO-ST wish you a year 2022 full of personal and professional satisfactions

    Read more
  • Safa MERAGHNI receives the PEPITE prize in the regional "Female Initiative " competition

    Her project is to create a "Smart Medical Assistant" which is an intelligent medical assistance device on a smartphone designed to help doctors in their diagnosis.

    Read more
  • IEEE ICEMS Conference : Best paper award

    Researchers from SHARPAC team/ENERGY department of FEMTO-ST institute received the Best Paper Award at the IEEE International Conference on Electrical Machines and Systems for their work on the influence of electrical conductivity on eddy-current losses in electrical machines.

    Read more
  • Joint laboratories CNRS-Companies 2021

    FEMTO-ST and AUREA Technology honored at the LAB COM CNRS event in Paris on November 29 and 30

    Read more

Pages