The institute
FEMTO's news

You are here

A new source of infrared light thanks to fibre optic cascades

Scientists from  FEMTO-ST Institute and McGill University (Montreal, Canada) have designed and developed in collaboration with three French companies a light source covering the entire mid-infrared wavelength range: from 2 to 10 µm. This work, which is published in Laser and Photonics Reviews , opens up applications in spectrometry and biomedical imaging.

See the CNRS article

Fiber-based supercontinuum1 (SC) light sources have become enormously useful in the last decade for a wide range of industrial and scientific applications. New uses are constantly emerging due to their unique optical properties that combine high brightness, multi-octave frequency bandwidth, inherently fiber delivery and single-mode output. Applications include optical coherence tomography (OCT), material processing, chemical sensing, gas monitoring, broadband imaging, and absorption spectroscopy. State-of-the-art SC lasers are based on silica-glass microstructured optical fibers, providing watts of output power over the bandwidth 0.4-2 µm. However, many applications such as detection of chemical and biological species would benefit from extending the SC spectrum beyond the state-of-the-art, in particular towards the mid-infrared (IR) range. This currently motivates significant research effort focused on extending the wavelength coverage towards the 2 to 20 µm molecular fingerprint region.

Various infrared soft glasses based on chalcogenide, tellurite, telluride, heavy-metal oxide and fluoride have been used for drawing highly nonlinear fibers for the mid-infrared, and experiments have shown efficient mid-IR SC generation up to 14 µm in chalcogenide optical fibers and up to 16 µm in telluride fibers. However, most of these mid-IR SC sources have been demonstrated using bulky and expensive mid-IR pump sources such as optical parametric oscillators and amplifiers, making them impractical for most abovementioned applications.

Now writing in Laser and Photonics Reviews, S. Venck and coworkers (SelenOptics) report a compact all-fiber cascaded system which provides a supercontinuum emission spanning the entire 2-10 µm mid-infrared range, thus offering a new reliable laser solution for molecular spectroscopy, remote sensing, optical coherence tomography, and hyperspectral imaging. To get this broad continuous spectrum, they developed a more practical and elegant solution based on a cascaded silica-fluoride-chalcogenide fiber system directly pumped by a compact pulsed fiber laser at a wavelength of 1.55 µm. The initial laser spectrum was progressively broadened and redshifted in the three cascaded fibers through nonlinear optical effects, enabling a stepwise extension towards the mid-infrared. This all-fiber system was shown to generate a nearly flat broadband mid-infrared continuous spectrum from 2 µm to 10 µm (See Figure 1), the upper transmission limit of the chalcogenide fiber, with several tens of milliwatts of output power.

T.Sylvestre (FEMTO-ST), who managed the project with SelenOptics, says argues:“This simple technique paves the way for low cost, practical, and robust broadband sources for mid-IR sensing and spectroscopy. Nothing expect the synchrotron radiation can give wider bandwidth”. The authors further describe in their paper a fully-realistic numerical model used to design the fibers and to simulate the nonlinear pulse propagation through the cascaded fiber system and they use numerical results to discuss and optimize the physical processes underlying the spectral broadening in the cascaded system. The teams concur that their mid-infrared supercontinuum source is now ready for commercialization and they are working on ways forward.

This work involves researchers from the FEMTO-ST institute, The McGill University in Montréal (Canada) and three French companies ( SelenOptics, Le Verre Fluoré, Leukos) and is the result of a European H2020 Marie-Curie ITN project under grant agreement 722328, managed by CNRS.

Contact : Thibaut Sylvestre

  • Laser nanofabrication: nanopillars emerging from sapphire

    Femtosecond lasers are well known for their ability to cut materials with extreme precision and texture surfaces. A FEMTO-ST team has achieved a world first, opening up a new use for these lasers.

    Read more
  • Best paper award on BIOSEC 2024

    Raniya Ketfi, Zeina Al Masry, and Noureddine Zerhouni have been awarded the Best Paper Prize at the 17th International Joint Conference on Biomedical Engineering Systems and Technologies

    Read more
  • Mayra Yucely Beb Caal awarded "Female Science Talents Intensive Track Champion 2024"

    A PhD student in FEMTO-ST's micro and nanorobotics team, she is one of 20 talented women from 15 countries, each making a significant contribution in their scientific field.

    Read more
  • Two Best Paper awards at Photonics West

    Mathilde Hary and Maxime Romanet win two of the 5 awards for best oral presentations at the world's leading optics-photonics conference

    Read more
  • John Dudley awarded EPS Prize for Research into the Science of Light

    This award – jointly with Goëry Genty from Tampere University – recognizes their pioneering contributions to ultrafast nonlinear fibre optics.

    Read more
  • Michaël Gauthier, new director of FEMTO-ST

    A new team is taking over the management of the institute for a 5-year term starting in January 2024.

    Read more
  • Nadia YOUSFI STEINER awarded the Blondel 2023 medal

    This medal recognizes the decisive contributions of her work on the resilience of fuel cell and hydrogen systems

    Read more
  • Maxence Leveziel wins CNRS robotics thesis award

    His work has led to the development of a miniature robot capable of manipulating micrometric objects at unprecedented speeds.

    Read more
  • Thibaut Sylvestre elected Optica Fellow 2024

    Thibaut is one of the 129 newly elected Optica Fellows, honored for his pioneering contributions to fiber optics and fiber lasers

    Read more
  • New Academic Year for the EIPHI Graduate School

    200 new students join its 16 international master's programs in 2023-2024

    Read more