The institute
FEMTO's news

Launch of the European i-Nano-T project

The Bourgogne Franche-Comté region is banking on regional scientific and industrial synergy to drive innovation in nanomedicine.

The i-NanoT (Innovations in Theranostic Nanovectors) project, certified and funded under the Burgundy-Franche-Comté ERDF-ESF+ program for the period 2025-2028, is set to be officially launched on December 2, 2025, in Dijon on the campus of the University of Burgundy Europe. This large-scale project, with a total budget of €18.4 million (including €15.6 million in ERDF funding), represents a major initiative for the development of nanomedicine in the region.

Scientific context and challenges

Nanomedicine represents a decisive step forward for personalized medicine by exploiting the unique properties of nanometric structures to improve the diagnosis and treatment of diseases. Theranostic nanovectors, which are at the heart of the i-NanoT project, represent a major innovation by enabling the specific targeting of pathological cells, the controlled administration of active ingredients, and real-time monitoring of therapeutic efficacy. These approaches are particularly relevant to the challenges posed by cancers, inflammatory and infectious diseases, where precision treatment is crucial to maximize efficacy while minimizing side effects.

The consortium and strategic contributions

The consortium brings together the driving forces of academic research, with the participation of ICB, ICMUB, FEMTO-ST, Chrono-environnement, and UMR Right. Added to this are industrial partners committed to therapeutic innovation: VIVEXIA, Delpharm, and SON. The project also involves renowned healthcare institutions (CGFL, CTM Dijon Inserm) and technology transfer players (SAYENS and Santenov) to ensure an integrated approach from research to clinical application.

FEMTO-ST makes an essential contribution to the i-NanoT project by addressing one of the major challenges of drug nanovectorization: the structural and functional characterization of nanovectors. Through the Nano2BIO team in the MN2S department, the institute is mobilizing its expertise to explore the targeting and stealth properties of nanovectors by developing specific biointerfaces for targeted pathologies on biochips and sensors. FEMTO-ST deploys cutting-edge biophysical instrumentation and applies its expertise in surface and interface physicochemistry. These resources enable the qualification of biomolecular interactions and the investigation of structures at the nanometric scale. This approach positions the institute as a key player in optimizing the functional properties of these innovative systems.

Technological challenges and prospects

The project addresses several major scientific and technological obstacles, including the standardization of synthesis processes, the detailed characterization of the physicochemical properties of nanovectors, and the transition to industrial scale through the implementation of “kilo-lab” procedures. The aim is to develop a comprehensive platform dedicated to theranostic nanovectors, from design to preclinical validation, ensuring reproducibility and pharmaceutical quality.

Following this institutional launch, work will continue according to an ambitious schedule. The scale and collaborative nature of the project illustrate the regional momentum in favor of precision medicine. The expected benefits are significant, with a 30% increase in turnover for partner companies. The project thus reinforces the region's attractiveness in the field of nanotechnology/health, positioning the Bourgogne Franche Comté region as a center of excellence in the field of innovative biotherapies.

Lien : https://www.linkedin.com/company/i-nanot/ 

[[{"fid":"43135","view_mode":"default","fields":{"format":"default","alignment":"","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false,"external_url":""},"type":"media","field_deltas":{"1":{"format":"default","alignment":"","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false,"external_url":""}},"attributes":{"class":"media-element file-default","data-delta":"1"}}]]

From left to right : C. ELIE-CAILLE, A. AL ASSAAD, W. BOIREAU, J. DEJEU, A. ROULEAU (FEMTO-ST Team)

  • Webconférences sur "e.Micronora"

    Dans le cadre de l’évènement virtuel sur les microtechniques « e.Micronora », FEMTO-ST propose des conférences en ligne le jeudi 24 septembre  au matin.

    Read more
  • Imaging quantum interference of entangled photon pairs of extremely high dimensionality

    Researchers from the Optics Department have developed an imaging device allowing the spatial and temporal resolution of the phenomenon of quantum interference between pairs of entangled photons of extremely high dimensionality.

    Read more
  • Concours posters doctorants : 11 ambassadeurs récompensés

    11 doctorants de 1ère année mis à l’honneur lors de l’Assemblée générale de FEMTO-ST du 10 juillet.

    Read more
  • Fei GAO Receives IEEE J.D. Irwin Early Career Award

    As a member of the SHARPAC team and Deputy Director of FEMTO-ST, Fei Gao has been recognized by the IEEE IES Society for his outstanding work in improving the reliability of hydrogen electric powertrains.

    Read more
  • Daniel HISSEL, winner of the CNRS 2020 Innovation Medal

    Full professor at the University of Franche-Comté, researcher at FEMTO-ST Institute and co-founder of a start-up on efficient hydrogen fuel cells, Daniel HISSEL is one of the four national winners of the CNRS 2020 Innovation Medal.

    Read more
  • A new source of infrared light thanks to fibre optic cascades

    Scientists from  FEMTO-ST Institute and McGill University (Montreal, Canada) have designed and developed in collaboration with three French companies a light source covering the entire mid-infrared wavelength range: from 2 to 10 µm.

    Read more
  • Topological crystals to guide waves on the water surface

    Topological crystals have the property of being conductive on their surface, but insulating in their volume which allows very efficient wave guidance by engineering the structure of these materials, generally arranged in a hexagonal symmetry, inspired by the graphene.

    Read more
  • Hommage à Raymond BESSON, « l’homme du quartz à 10-14 »

    Scientifique passionné, professeur à l’ENSMM jusqu’en 2006 et directeur du Laboratoire de Chronométrie, Electronique et Piézoélectricité entre 1978 et 2002, Raymond Besson était réputé dans la communauté internationale du temps-fréquence pour ses résonateurs à quartz et est décédé ce 15 avril.

    Read more
  • Des visières de protection produites en série

    Dans le cadre de la crise sanitaire actuelle, FEMTO-ST, en lien avec ses tutelles, s'est impliqué dans la réalisation de deux modèles de visières de protection qui sont produites en série sur le site bisontin depuis le 9 avril 2020.

    Read more
  • An innovative solution to detect pollutants in the subsoil

    Researchers from FEMTO-STinstitute and the company TOTAL SA have succeeded in detecting organic pollutants with methods that did not require sampling and have been able to monitor the evolution of the pollution of the subsoil over periods ranging up to several years.

    Read more