The institute
FEMTO's news

You are here

Two FEMTO-ST PhD students win awards at the IFCS-EFTF 2025 international conference

Their innovative work paves the way for new environmental monitoring devices and a new generation of atomic micro-clocks.

The 2025 International Frequency Control Symposium – European Frequency Time Forum (IFCS-EFTF) Joint Meeting, the major international conference in the field of Time-Frequency metrology, took place from May 12 to 16, 2025, in Querétaro, Mexico (https://2025.ieee-ifcs-eftf.org/).

During this conference, two PhD students from Time-Frequency department of FEMTO-ST, Ghida Fawaz (COSYMA) and Carlos Rivera-Aguilar (OHMS), obtained student prizes in their respective groups.

Ghida Fawaz works on the design of an innovative surface elastic wave device for real-time monitoring of air quality, and more specifically for quantifying fine particles present in the environment. This system combines a cascade impactor with SAW sensors positioned on the impaction surface, allowing for precise separation of particles according to their size, while ensuring instantaneous measurement of their deposited mass. To ensure reliable readings, an in-depth study was conducted on the sensitivity and repeatability of the sensors to particles under various conditions. The results revealed the need to regularly clean the sensors after their exposure to polluted atmospheres. To address this challenge, a self-cleaning mechanism was integrated into the impactor, exploiting the properties of surface elastic waves to displace a water droplet and thus restore the cleanliness of the sensors. These characteristics give this device an innovative character, meeting expectations compared to the solutions currently available on the market.

Carlos Rivera's (OHMS) studies concern the development of a microwave microcell atomic clock based on coherent population trapping. This clock, based on a Cs vapor microcell developed at FEMTO-ST (MN2S/MOSAIC, contact: N. Passilly), employs advanced pulsed interrogation techniques (Ramsey sequences) to drastically reduce the sensitivity of the clock frequency to variations in the parameters of the interrogation light field (laser power, laser frequency, etc.). The strength of                   C. Rivera's work was to implement this pulsed optical sequence without any external optical modulator, but by using direct modulation of the laser current. This approach maintains a compact clock architecture, compatible with real integration. The clock is controlled by an FPGA electronic board. With this method, C. Rivera-Aguilar has demonstrated a microcell atomic clock with fractional frequency stability in the low range of 10-12 at 1 day, i.e. 1 order of magnitude better than current commercial chip-scale atomic clocks (CSACs). This work could open the door to a new generation of CSACs with increased long-term stability performance, thus meeting the specifications of new applications.

Publications :
Carlos Rivera : https://doi.org/10.1063/5.0196975 , https://arxiv.org/abs/2503.01681

Contacts :
Ghida FAWAR
Carlos RIVERA

  • Emmanuel RAMASSO, recipient of a « Group Achievement Award » by NASA

    For outstanding contributions to the open data initiative by conducting and posting experimental system fault and run-to-failure data sets with exceptional scientific value.

    Read more
  • Chimeras exist...

    The American Institute of Physics (AIP) has featured our recent article in a special science highlight, known as a Scilight. Due to its novelty and close connection with ever-present phenomena, reported results are of wide interest to the general public.

    Read more
  • Entrepreneurs-PhD Award in Bourgogne-Franche-Comté: 3 laureates from FEMTO-ST institute

    Vladimir Gauthier (CellSelect project), Aliyasin El Ayouch (Metabsorber project), Romain Viala (MICAD project),   were rewarded during the regional final which took place on October 16 in Dijon

    Read more
  • « Micron d’or » Award at the international microtechnology trade fair

    For one of the most dexterous miniature robots with 7 degrees of freedom, allowing micromanipulation and microassembly in extremely confined spaces

    Read more
  • nanofis de polymères

    Polymer-based nanowires

    Molecules, salt and light :  an easy recipe to provide giant nanowires !

    Read more
  • Optical Neural Networks start to learn...

    Work is actively in progress at FEMTO-ST in order to design the photonic architectures dedicated to our future processors that will be computing through artificial intelligence concepts.

    Read more
  • When the light is directed by its magnetic field

    FEMTO-ST researchers have discovered a new optical magnetic interaction to direct light fluxes. These works are published in the journal Light: Science and Applications
    Read more
  • Amar Nath Ghosh awarded at OSA Advanced Photonics Congress

    Amar Nath Ghosh won the Best student paper award of the OSA Advanced Photonics Congress , Zurich.

    Read more
  • Focus on the innovations of the "hydrogen-energy systems" sector

    A few days after the announcement by the government of the launch of a major national hydrogen plan, the Femto-ST institute is organizing on 20 June 2018 at the FCLAB in Belfort, a focus on innovations in the "hydrogen energy systems" sector.

    Read more
  • Nicolas Andreff, receives the scientific award "Charles Defforey" from -Institut de France Foundation

    Awarded May 30 under the Dome of the “ (Institut de France) " by Jean-Paul Laumond, a member of the Academy of Sciences, this Grand Prize crowns the work & skills of Nic

    Read more

Pages