The institute
FEMTO's news

Ondes de spin optiques, un nouvel état de la lumière

Les états magnétiques présents dans la matière sont une source d’inspiration pour imaginer de nouveaux états de la lumière. Une équipe de l’institut FEMTO-ST a conçu puis créé un équivalent optique des ondes dites « de spin » se propageant dans les aimants. Basés sur une analogie entre les propriétés « chirales » des matériaux magnétiques et de métamatériaux optiques, ces travaux sont publiés dans la revue Nano Letters.

Les aimants ont la capacité de créer et propager en leur sein des ondes magnétiques microscopiques. Ces ondes dites de spin sont quantifiées sous la forme de « quasiparticules » baptisées magnons.  Elles résultent du phénomène de précession (rotation) des micro-aimantations au cœur du matériau et de couplages entre ces micro-aimantations tournantes.  Les ondes de spin sont actuellement au centre d’une activité scientifique intense, la magnonique, car elles permettent d’envisager le transport et le traitement de l’information dans des architectures miniatures intégrées, sans déplacement d’électrons. La magnonique pourrait donc générer des composants informatiques qui ne chauffent pas, donc se positionner comme une alternative à l’électronique moins couteuse en énergie.

Des chercheurs de l’Institut FEMTO-ST (CNRS/Université de Franche-Comté, Supmicrotech-ENSMM/ Université Technologique Belfort-Montbéliard) ont conçu et créé un équivalent optique des ondes de spin magnétiques dans des chaines de nano-hélices en carbone recouvertes d’une fine couche d’or. L’excitation lumineuse de telles structures « plasmoniques » déclenche des ondes de spin optique se propageant à travers la structure périodique. Chaque nano-hélice développe un phénomène optique (plasmonique) local tournant qui, par couplages successifs entre nanostructures adjacentes, aboutit à la production d’une nouvelle onde lumineuse partageant des similitudes avec les ondes de spin magnétiques. Cette approche repose sur l’exploitation de la chiralité géométrique de la matière nanostructurée comme un équivalent pour l’optique de la chiralité gyromagnétique à l’origine des micro-aimantations tournantes produisant les ondes de spin magnétiques.

Les ondes de spin optiques permettent d’entrevoir des moyens inédits de contrôler la lumière à très petite échelle. Sous leurs formes élémentaires, les ondes de spin optiques pourraient aboutir au concept de magnons optiques, une nouvelle famille de quasiparticules de lumière transportées dans des réseaux de nanostructures chirales à modes propres tournants.

Ces travaux sont soutenus par la Graduate School EIPHI.

[[{"fid":"35551","view_mode":"default","fields":{"format":"default","alignment":"","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false,"external_url":""},"type":"media","field_deltas":{"1":{"format":"default","alignment":"","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false,"external_url":""}},"attributes":{"height":"194","width":"361","class":"media-element file-default","data-delta":"1"}}]]

[[{"fid":"35552","view_mode":"default","fields":{"format":"default","alignment":"","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false,"external_url":""},"type":"media","field_deltas":{"2":{"format":"default","alignment":"","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false,"external_url":""}},"attributes":{"height":"194","width":"365","class":"media-element file-default","data-delta":"2"}}]]

© Femto-ST

En haut, vue artistique comparative des concepts d’ondes de spin magnétique et optique. Les flèches vertes représentent les micro-aimantations, constitutives d’un aimant, en mouvements de précession. Les flèches jaunes symbolisent les couplages entre les micro-aimantations tournantes. Les hélices rouges modélisent les modes plasmoniques tournants portés par les nano-hélices en or. Les flèches jaunes désignent les couplages optiques entre nanohélices. L’idée de mouvement de rotation locale à l’origine des ces deux types d’ondes est illustrée à l’aide de cercles bleus à rayon rouge. Les rayons rouges indiquent les retards temporels entre mouvements rotatoires successifs. Cette image a été réalisée avec le concours de Blandine Guichardaz.
En bas, image au microscope électronique à balayage d’une chaîne d'hélices, support des ondes de spin optiques. L’échantillon est constitué de dix hélices de carbone de 6 tours recouvertes d’une fine couche d'or (25 nm). Les nanostructures sont fabriquées sur une couche d'or de 100 nm d'épaisseur déposée sur un substrat de verre de 1 mm d'épaisseur. Barres d’échelle : 2 µm. La chaine « plasmonique » est excitée localement à l'aide d'une nano-ouverture rectangulaire gravée au pieds de la nano-hélice la plus à droite. Sous illumination par le substrat, la nano-ouverture couple ponctuellement la lumière à la chaîne de nano-hélices.

 

Références :
Karakhanyan, R. Salut, M.A. Suarez, N. Martin and T. Grosjean.
Nano Lett. (2024)
DOI : https://pubs.acs.org/doi/10.1021/acs.nanolett.4c01346

Contact chercheur :
Thierry Grosjean – FEMTO-ST
thierry.grosjean@univ-fcomte.fr

Contact communication INSIS :
insis.communication@cnrs.fr

Lire l'article publié par le CNRS :
https://www.insis.cnrs.fr/fr/cnrsinfo/les-ondes-de-spin-optiques-un-nouvel-etat-de-la-lumiere

 

  • Webconférences sur "e.Micronora"

    Dans le cadre de l’évènement virtuel sur les microtechniques « e.Micronora », FEMTO-ST propose des conférences en ligne le jeudi 24 septembre  au matin.

    Read more
  • Imaging quantum interference of entangled photon pairs of extremely high dimensionality

    Researchers from the Optics Department have developed an imaging device allowing the spatial and temporal resolution of the phenomenon of quantum interference between pairs of entangled photons of extremely high dimensionality.

    Read more
  • Concours posters doctorants : 11 ambassadeurs récompensés

    11 doctorants de 1ère année mis à l’honneur lors de l’Assemblée générale de FEMTO-ST du 10 juillet.

    Read more
  • Fei GAO Receives IEEE J.D. Irwin Early Career Award

    As a member of the SHARPAC team and Deputy Director of FEMTO-ST, Fei Gao has been recognized by the IEEE IES Society for his outstanding work in improving the reliability of hydrogen electric powertrains.

    Read more
  • Daniel HISSEL, winner of the CNRS 2020 Innovation Medal

    Full professor at the University of Franche-Comté, researcher at FEMTO-ST Institute and co-founder of a start-up on efficient hydrogen fuel cells, Daniel HISSEL is one of the four national winners of the CNRS 2020 Innovation Medal.

    Read more
  • A new source of infrared light thanks to fibre optic cascades

    Scientists from  FEMTO-ST Institute and McGill University (Montreal, Canada) have designed and developed in collaboration with three French companies a light source covering the entire mid-infrared wavelength range: from 2 to 10 µm.

    Read more
  • Topological crystals to guide waves on the water surface

    Topological crystals have the property of being conductive on their surface, but insulating in their volume which allows very efficient wave guidance by engineering the structure of these materials, generally arranged in a hexagonal symmetry, inspired by the graphene.

    Read more
  • Hommage à Raymond BESSON, « l’homme du quartz à 10-14 »

    Scientifique passionné, professeur à l’ENSMM jusqu’en 2006 et directeur du Laboratoire de Chronométrie, Electronique et Piézoélectricité entre 1978 et 2002, Raymond Besson était réputé dans la communauté internationale du temps-fréquence pour ses résonateurs à quartz et est décédé ce 15 avril.

    Read more
  • Des visières de protection produites en série

    Dans le cadre de la crise sanitaire actuelle, FEMTO-ST, en lien avec ses tutelles, s'est impliqué dans la réalisation de deux modèles de visières de protection qui sont produites en série sur le site bisontin depuis le 9 avril 2020.

    Read more
  • An innovative solution to detect pollutants in the subsoil

    Researchers from FEMTO-STinstitute and the company TOTAL SA have succeeded in detecting organic pollutants with methods that did not require sampling and have been able to monitor the evolution of the pollution of the subsoil over periods ranging up to several years.

    Read more