The institute
FEMTO's news

Un cerveau optique ultra rapide

cerveau optique ultra-rapide

cerveau optique ultra-rapide

cerveau optique ultra-rapide

L'association de tous nouveaux concepts de calcul inspirés par le cerveau, et de composants photoniques, a permis la mise au point d'un processeur optique capable de résoudre des problèmes complexes de manière ultra-rapide.

Depuis quelques années, le domaine de l’informatique connait une révolution depuis que l’intelligence artificielle est envisagée sous l’angle des réseaux de neurones artificiels de nouvelles générations (notamment avec le deep learning ou apprentissage profond), issus notamment de l’apprentissage machine. L’indicateur le plus visible concerne les géants du secteur comme IBM, Google, Facebook, qui ont en fait un axe fort de développement stratégique en démultipliant les équipes de recherche sur le sujet et en recrutant les chercheurs les plus en pointes dans le domaine.

Ces approches pourtant connues depuis plus de 60 ans bénéficient d’une formidable renaissance (après avoir été quasiment « oubliées » pendant 20 ans), grâce notamment aux nouvelles générations de processeurs parallèles (les GPU, massivement mis en parallèles), et aux bases de données gigantesques accessibles.

Toutefois, les ressources informatiques nécessaires pour traiter ces données devenues massives sur l’internet, et malgré le formidable essor récent des technologies numériques, sont en passe d’atteindre les limites des capacités des unités de calculs modernes en termes de rapidité de traitement des données et d’efficacité de gestion de l’énergie.

C’est pourquoi, au-delà d’une approche informatique, une approche physique propose de nouvelles solutions matérielles, et non logicielles, pour réaliser les calculateurs du futur, destinés à remplacer efficacement (énergie, rapidité) les approches actuelles dominées par la programmation dans des calculateurs conventionnels. En effet, ces derniers proviennent des travaux de John von Neumann qui au début des années cinquante proposa, en s’appuyant sur les travaux de Turing, la première réalisation opérationnelle d’un calculateur qui constitue encore aujourd’hui l’architecture de base de tous les processeurs de nos ordinateurs, qui n'est factuellement pas adaptée aux concepts émergents de l'intelligence artificielle.

Le nouveau concept de calculateur neuromorphique utilisé dans ces travaux, le Reservoir Computing, est a priori celui d'un calculateur universel. Il a pu être implémenté physiquement sur un dispositif photonique avec des lasers, des fibres optiques, des modulateurs et détecteurs de lumière. Sa capacité de calcul, après une phase d’apprentissage, a été testée avec succès dans le cas d'un test standard de reconnaissance vocale. Une vitesse de traitement record de près d'1 million de mots par seconde a été atteinte.

Une des originalités concerne l'utilisation d'une astuce récemment proposée, consistant à émuler dans des dimensions temporelles multi-échelles le traitement de l’information par un réseau de neurones artificiel (habituellement considéré à travers ses dimensions spatio-temporelles), au travers d'une architecture de type oscillateur optoélectronique à boucle à retard. Celle-ci a pu être implémentée physiquement avec des composants standards des télécommunications optiques.

Ce résultat ouvre la voie à une solution technologique originale de réalisation physique des futurs processeurs neuro-inspirés. Cette solution originale donne accès à la puissance de calcul offerte par les processeurs neuronaux, à des vitesses de traitement inégalées (échelles de temps des télécommunications optiques jusqu'à 1 milliard de fois plus rapides que celles du cerveau humain), et potentiellement à une excellente efficacité énergétique grâce à l'utilisation de la lumière comme support de l'information.

Malgré une architecture ayant un niveau de complexité encore relativement modeste, le système photonique réalisé a des performances comparables à celles des meilleures solutions algorithmiques utilisant des ordinateurs standards (donc comparativement beaucoup plus lents).

Les résultats obtenus concernent aussi sur un plan plus fondamental, l'établissement d'un modèle qui crée un lien manquant entre les réseaux de neurones et des concepts de traitement du signal. Ce lien met en lumière une méthode pratique pour trouver des solutions au problème technologique critique du câblage dense entre neurones. En effet, cela consiste à travailler uniquement sur des dimensions temporelles multi-échelles au lieu de tenter de reproduire les dimensions spatio-temporelles, liées au câblage naturellement assuré par les synapses dans le cerveau humain.

Contact : Maxime Jacquot

Tel : 03.63.08.24.16

Voir l'article

  • An innovative solution to detect pollutants in the subsoil

    Researchers from FEMTO-STinstitute and the company TOTAL SA have succeeded in detecting organic pollutants with methods that did not require sampling and have been able to monitor the evolution of the pollution of the subsoil over periods ranging up to several years.

    Read more
  • FEMTO-ST is closed

    Within the framework of Coronavirus (COVID-19) epidemic and  following the measures announced by the President of the French Republic,  all the premises of our laboratory in Besançon, Belfort and Montbéliard cities are closed to the public from this Tuesday March 17.

    Read more
  • I-PhD Innovation Competition: 2 winners from FEMTO-ST

    Maya Geagea (ANIO-PAC project: micro fuel cells), and Gaël Matten (VIBISCUS project: noise reduction system), special jury prize, are winners of the 2019 innovation awards.

    Read more
  • Sarah Benchabane winner of an ERC Consolidator grant 2019

    CNRS Research Fellow at the FEMTO-ST Institute, Sarah is awarded with a prestigious €2M European Research Council (ERC) grant for her  project : Nanophonics for Quantum Information Processing.

    Read more
  • Stardust Odyssey : A new world record !

    Discover the smallest volume character ever animated in stop-motion (frame by frame) through a short film made thanks to FEMTO-ST's high-tech robotic equipments and researchers.

    Read more
  • Final report of the DATAZERO project

    A national project to design and manage medium power data centers powered exclusively by renewable energy sources

    Read more
  • Vladimir GAUTHIER is national winner of the PEPITE competition for young creators of innovative companies

    Entrepreneurial PhD at FEMTO-ST, Vladimir Gauthier is developing a company project on the microrobotic sorting of biological cells, which has received national price !

    Read more
  • Two young regional researchers awarded by the CNRS bronze medal

    Aude Bolopion (microrobotics) and Nadia Yousfi-Steiner (electrical engineering), two young researchers from FEMTO-ST Institute, were awarded by the CNRS bronze medal for their contribution to the advancement of French research.

    Read more
  • Secure and certify time

    Inauguration on Tuesday, July 9 of a joint laboratory between FEMTO-ST and Gorgy Timing to develop secure and certified time and frequency broadcasting systems for wireless and computer networks.

    Read more
  • Micro-soufflage de verre pour la réalisation de composants optiques miniatures

    A team of researchers from FEMTO-ST has developed miniature conical lenses by revisiting glass-blowing techniques practiced since Roman times.

    Read more