The institute
FEMTO's news

You are here

An innovative solution to detect pollutants in the subsoil

Researchers from FEMTO-STinstitute and the company TOTAL SA have succeeded in detecting organic pollutants with methods that did not require sampling and have been able to monitor the evolution of the pollution of the subsoil over periods ranging up to several years.

This challenge was made possible thanks to the development of autonomous and wireless sensors capable of detecting hydrogen sulfide through a layer of sand. These results have just been published in the journal ACS Sensors.

 Soil pollution, especially in basements, is a major environmental issue. This problem is very significant in areas that have been occupied for years by human activities, particularly for industrial sites. Numerous standards have been put in place to fight against this scourge, which can have consequences on groundwater  and on the reuse of this land for new activities (construction, agricultural land, etc.).

The main challenge in monitoring basement pollution is to observe over long periods, up to several years, the evolution of pollution in the in the subsoil. The current principle is based on sampling at regular intervals via a triptych of field sampling-extraction-analysis. This strategy is effective in terms of analysis (detection threshold, composition, etc.) but is time-consuming and costly.

As part of a collaborative research project undertaken with funding from the French National Research Agency (UNDERGROUND project ANR-17-CE24-0037), researchers from the FEMTO-ST Institute (CNRS/Université de Franche-Comté/École Nationale Supérieure de Mécanique et des Microtechnologies de Besançon) and the company TOTAL SA have developed a new generation of sensors which can detect a very harmful pollutant, hydrogen sulphide, H2S, through a layer of sand. For this purpose, they have developed on the one hand wireless elastic wave sensors sensitive to H2S and on the other hand they have optimized the interrogation system to be able to follow the pollution of the subsoil through a layer of sand.

The starting point for this study is the use of sensors using surface elastic waves (SAW) because these transducers are passive and can be interrogated wirelessly: they do not require a local power source to operate and they can be interrogated remotely by a radio wave. They are therefore ideal for use underground. In addition, ground penetrating RADAR (GPR) is known to be a powerful tool for the geological analysis of subsoils. However, the performance of this type of GPR is not adapted to detect chemical species. Thus, researchers at the FEMTO-ST Institute, specialists in electronics and time-frequency, have modified a commercial GPR to give it the ability to interrogate SAW sensors.  In parallel, chemists at FEMTO-ST have developed a coordination polymer whose mechanical properties are modified by a specific reaction with H2S, thus enabling H2S detection by surface acoustic waves (SAW). This polymer is also compatible with collective manufacturing processes used in the MIMENTO clean room of FEMTO-ST (RENATECH national network).

https://pubs.acs.org/doi/abs/10.1021/acssensors.0c00013

Contacts :
Frédéric Chérioux
Jean-Michel Friedt

 

  • Two best student paper awards for Ishamol Labbaveettil

    Awards for her PhD work on KNbO3 films

    Read more
  • Dissociating Nitrogen Molecules Using Silicon Atoms

    Researchers from FEMTO-ST have just demonstrated a novel process for dissociating nitrogen molecules through low-energy footprint processes, a crucial step towards the decarbonized production of high-value-added molecules.

    Read more
  • DESCROIX-VERNIER ETHICSCIENCE award for Agathe FIGAROL

    An innovative tumor model on a microchip to fight brain cancer

    Read more
  • A novel approach to filling miniature atomic clock cells

    This new method, which gains flexibility, paves the way for large-scale production of atomic sensors.

    Read more
  • National Days on Emerging Technologies in Micro-Nanofabrication

    These scientific days, which take place from November 30 to December 2 in Besançon, France, bring together the major French players in micro-nanotechnologies, process engineering, physics and modeling of manufacturing processes.

    Read more
  • 16th International Symposium on Distributed Autonomous Robotic Systems

    Nearly a hundred scientists from all over the world will meet under the auspices of FEMTO-ST, in Montbéliard from November 28 to 30 to exchange on an interdisciplinary field in full expansion.

    Read more
  • Fei Gao wins the "Sustainable Future Visionary Award"

    Full professor at UTBM and researcher at FEMTO-ST institute, Fei Gao is today one of the world's leading specialists in fuel cells and digital twins.

    Read more
  • Gold micron award at MICRONORA trade fair 2022

    FEMTO-ST is awarded a gold micron for its three-dimensional nanorobotic structure, which is precisely and continuously actuated according to the power of light for the gripping of nano objects.

    Read more
  • FEMTO-ST at MICRONORA trade fair 2022

    From September 27th to 30th, more than 600 direct exhibitors and 15000 professional visitors are expected in Besançon on the international microtechnology exhibition. FEMTO-ST and FEMTO Engineering will be present.

    Read more
  • The fastest pick-and-place robot in the world

    A research team has developed a miniature robot capable of manipulating micrometric objects at unprecedented speeds. This work has been published in the prestigious American journal "Science Robotics"

    Read more

Pages