The institute
FEMTO's news

You are here

Laser nanofabrication: nanopillars emerging from sapphire

Femtosecond lasers are well known for their ability to cut materials with extreme precision and texture surfaces. A FEMTO-ST team has achieved a world first, opening up a new use for these lasers.

A single laser pulse can be used to generate high aspect ratio nanopillars on sapphire, by moving a large volume of material from the inside of the material to the surface. This work is published in « Laser & Photonics Reviews » and promoted by The French National Center for Scientific Research (CNRS).

Their approach is based on the use of tubular beams, also known as higher-order Bessel beams, which induce a cylindrical micro-explosion in the material. Depending on the laser intensity, this micro-explosion can displace a nano-pillar from the material (see illustration) or even create a nano-jet subject to hydrodynamic instabilities, freezing to form structures with a high aspect ratio and varied morphologies. These nano-pillars typically have a diameter of 800 nm and heights of up to 15 µm.

Interestingly, the resulting structures are crystalline. These nano-pillars could therefore find applications in fields as diverse as metamaterials, mechanics, healthcare, sensors, photonics and phonics. From a fundamental point of view, these results also demonstrate the ability to confine laser-matter interaction to scales of the order of fifty nanometers, even in extreme thermodynamic regimes.

See the CNRS news

Contact : François Courvoisier

https://doi.org/10.1002/lpor.202300687

  • Daniel HISSEL awarded as « Fellow » of the IEEE society

    Professor in Electrical Engineering at the University of Franche-Comté and researcher at FEMTO-ST, Daniel Hissel has been awarded as  for his work on hydrogen systems.

    Read more
  • March 8, International Women's Day

    "Freedom, like Science, and Women's Rights, are fundamental issues for Humanity."

    FEMTO-ST chooses to display on this day of March 8 (also charged with the serious news of the war in Ukraine), its commitment to each of these three issues.

    Read more
  • First experimental observation of the roton effect in metamaterials

    Experiments conducted jointly by FEMTO-ST and KIT demonstrate the control of forward and backward wave propagation by adjusting the frequency.

    Read more
  • FEMTO-ST partner of the Joint Technology Unit "CAPPLAI"

    For the development of sensors to control and optimize the performance of dairy processes.                                                                                     

    Read more
  • Happy new year 2022 !

    The Management and all the members of FEMTO-ST wish you a year 2022 full of personal and professional satisfactions

    Read more
  • Safa MERAGHNI receives the PEPITE prize in the regional "Female Initiative " competition

    Her project is to create a "Smart Medical Assistant" which is an intelligent medical assistance device on a smartphone designed to help doctors in their diagnosis.

    Read more
  • IEEE ICEMS Conference : Best paper award

    Researchers from SHARPAC team/ENERGY department of FEMTO-ST institute received the Best Paper Award at the IEEE International Conference on Electrical Machines and Systems for their work on the influence of electrical conductivity on eddy-current losses in electrical machines.

    Read more
  • Joint laboratories CNRS-Companies 2021

    FEMTO-ST and AUREA Technology honored at the LAB COM CNRS event in Paris on November 29 and 30

    Read more
  • Nanorobotics of the future: FEMTO-ST enters the 4th dimension

    For the first time, nanorobotic structures have been realized by folding in 3 dimensions a multilayer membrane and proposing their actuation by an electro-thermo mechanical principle.

    Read more
  • Chaos and rogue waves in a supercontinuum laser

    In collaboration with the Universities of Tampere, Aston and ICB laboratory, FEMTO-ST researchers have made significant headway in the ongoing effort to understand the ultrafast chaotic nature of lasers, elucidating for the first time their noise-like pulse operation.

    Read more

Pages