The institute
FEMTO's news

You are here

Understanding the cytotoxicity of metallic nanoparticles

A recent study published in the journal "Chemical Science" and involving FEMTO-ST gives new insights into the understanding of the mechanisms of DNA alteration in cells by metallic nanoparticles.

Oxidative stress is one of the processes often incriminated in the genesis of many diseases, such as cancers. This oxidative stress is characterized by the production in cells of oxidizing species called ROS (reactive oxygen species), which can alter DNA. The production of ROS results from electron transfer processes involving metal cations. Fortunately, most cells have effective self-defense systems that prevent the formation of ROS. Molecules from the catechol family (aromatic molecules with at least two adjacent alcohol functions) act as ROS defense agents. These well-known electron exchange mechanisms are the perfect explanation for the toxicity of metal oxide nanoparticles. However, the mechanism of action of metal oxide nanoparticles is still unknown, even though they are more toxic than their oxide-based alter-ego or the corresponding metal cations in solution.

Researchers from the Néel Institute (CNRS/University Grenoble Alpes), the FEMTO-ST Institute (CNRS/University Bourgogne-Franche-Comté), the Institute of Materials Science in Madrid (Spain) and the Institute of Materials Science in Trieste (Italy) have discovered sources of cytoxicity for metallic nanoparticles.

To understand and model the role of the surface of nanoparticles, the researchers focused their study on a low-energy (particularly stable) surface of copper interacting with a molecular layer under ultra-high vacuum. Observations of individual molecules, using scanning tunneling microscopy, high-resolution analysis of the composition of each molecule, and ab initio calculations, revealed how the molecules are gradually transformed. The main result shows that the copper surface is the site of a very particular oxidation-reduction reaction, known as "intramolecular": the catechol molecules see their alcohol functions oxidized while other functions are reduced, thanks to a transfer of electrons between the substituents of the same molecule. This transformation is governed by the alignment of the electronic levels of the copper surface and the molecules, the copper surface "forcing" the molecule to transform itself to allow its adsorption.

This study proposes a mechanism of action of the surfaces of metallic nanoparticles to transform cell defense agents into ROS-type agents that can alter cellular DNA and thus cause cancer. The metal plays a catalytic role here, i.e. a minute quantity of copper surface can oxidize a very large quantity of catechol-type molecules. The study illustrates the power of the paraphernalia of surface science techniques to uncover the evolution of a priori very complex systems, including living systems. The work will be extended to validate in a biological environment the mechanism of action of the metallic nanoparticles discovered and to open up new perspectives in the understanding of the mechanisms of DNA alteration.

Online article

DOI : 10.1039/D0SC04883F

 Contact : Frédéric Chérioux

  • When the light is directed by its magnetic field

    FEMTO-ST researchers have discovered a new optical magnetic interaction to direct light fluxes. These works are published in the journal Light: Science and Applications
    Read more
  • Amar Nath Ghosh awarded at OSA Advanced Photonics Congress

    Amar Nath Ghosh won the Best student paper award of the OSA Advanced Photonics Congress , Zurich.

    Read more
  • Focus on the innovations of the "hydrogen-energy systems" sector

    A few days after the announcement by the government of the launch of a major national hydrogen plan, the Femto-ST institute is organizing on 20 June 2018 at the FCLAB in Belfort, a focus on innovations in the "hydrogen energy systems" sector.

    Read more
  • Robotic assembly of the smallest house in the world

    the handling and assembly capabilities of nanocomponents of the "μRobotex" platform make the buzz on the net and in the international press through the origami manufacturing of a micro-house at the end of an optical fiber whose dimensions are less than the diameter of a hair.

    Read more
  • Nicolas Andreff, receives the scientific award "Charles Defforey" from -Institut de France Foundation

    Awarded May 30 under the Dome of the “ (Institut de France) " by Jean-Paul Laumond, a member of the Academy of Sciences, this Grand Prize crowns the work & skills of Nic

    Read more
  • International Day of Light 2018

    Following the success of the International Year of Light, which highlighted the importance of light-based science and technology and generated more than 13,000 activities in 147 countries, UNESCO proclaimed May 16 as the International Day of Light.

    Read more
  • Enrico Rubiola honored at IFCS 2018

    Enrico Rubiola will receive the W. G. Cady Award at the IFCS 2018 on May 24th.

    Read more
  • L'institut FEMTO-ST partenaire d'un programme européen Marie-Curie H2020 Innovative Training Networ

    The department of Optics of the FEMTO-ST research institute in Besançon
    in France currently has a vacancy for 2 3-years Ph.D positions working in
    the development of mid-infrared and ultraviolet supercontinuum fiber sources within the

    Read more
  • FACS 2016 - The 13th International Conference on Formal Aspects of Component Software

    The DISC department, organizer of the 13th International Conference on FACS.

    Read more
  • Special issue of Comptes Rendus Physique on phononic crystals

    The May 2016 issue of Comptes Rendus Physique (an international peer-reviewed journal of the French Academy of Sciences), is devoted to phononic crystals. This special issue was coordinated by Vincent Laude.

    Read more

Pages