The institute
FEMTO's news

You are here

Chimeras exist...

The American Institute of Physics (AIP) has featured our recent article in a special science highlight, known as a Scilight. Due to its novelty and close connection with ever-present phenomena, reported results are of wide interest to the general public.

We find delay systems everywhere in our delay life. The morning-fight between you and your shower’s temperature is one example: the initially freezing-cold water makes you turn the temperature dial to the maximum temperature. When that water reaches your head your response to burning hot water is to turn the shower to cold, upon which you freeze again – a vicious cycle which in dynamical systems can continue forever. Everyone who regularly gets stuck in the morning commuter-traffic will equally appreciate the importance of a well-planned network.

That both, systems with delay and networks are actually different sides of the same coin is known since some years. In our work we show in experiments that a system with two delays behaves like a two dimensional (2D) network. We find fascinating states such as 2D-chimeras and solitons. Chimeras are states where a part of the network is chaotic, but a section remains fully calm, see Fig. 1. Imagine a stormy sea, in whose centre you find a completely calm area – almost like a harbour, but without any walls needed. Solitons are waves, which exist without losing their shape, and in theory can live forever.

We give the first experimental confirmation of this 2D analogy between delay and network. The states we find are relevant for potential applications in neuromorphic computing.Ultimately, the brain too is a network.

 D. Brunner, B. Penkovsky, R. Levchenko, E. Schöll, L. Larger, Y. Maistrenko, “Two-dimensional spatio-temporal complexity in dual-delayed nonlinear feedback systems: chimeras and dissipative solitons,” Chaos 28, 103106 (2018). https://aip.scitation.org/doi/10.1063/1.5043391

  • Giacomo Clementi, grand prize i-PhD

    For his work on Lithium Niobate (LiNbO3), which has led to the design of original and efficient devices for the recovery of vibratory energy by the piezoelectric effect, in particular for connected objects.

    Read more
  • Understanding energy transfers during photosynthesis

    Using three pigments manipulated by scanning tunneling microscopy, researchers from IPCMS and FEMTO-ST are studying energy transfers between molecules to gain a finer understanding of the photosynthesis mechanism in plants. This work is published in Nature Chemistry.

    Read more
  • International Day of Light on May 16th

    This year, the Student Chapter of FEMTO-ST organizes on this occasion a photo contest on the theme ′′ Light phenomena in everyday life ".

    Read more
  • AMAROB labelled Deep Tech company

    Spin off of FEMTO-ST, Amarob technologie has received the Deep Tech company label awarded by Bpifrance.

    Read more
  • New platform to support the design and optimization of fuel cell hybride system and battery

    Virtual FCS" is the first freely accessible online simulation platform to support fuel cell manufacturers and users.

     Supported by a European funding, "Virtual FCS" has for French partner the University of Bourgogne-Franche-Comté through the FEMTO-ST institute and the FC-LAB

    Read more
  • ThermoBot : micro robots that walk on water

    Imagine, a robot, the size of a fly, walking on the surface of the water and pursued by a laser beam. One could believe in a science fiction scenario...

    Read more
  • Recognizing liars from the sound of their voice ?

    Scientists have prouved that the intensity, speed and pitch of the speaker's voice automatically influences our perception of the reliability and honesty of his or her speech. This work is published in the prestigious journal "Nature Communications"

    Read more
  • European project for the development of sustainable and high-performance bio-based composites

    Led by FEMTO-ST and supported by the University of Franche-Comté, the « SSUCHY » R&D project which brings together 17 European partners is entering its final phase. The project is now quite advanced.

    Read more
  • Understanding the cytotoxicity of metallic nanoparticles

    A recent study published in the journal "Chemical Science" and involving FEMTO-ST gives new insights into the understanding of the mechanisms of DNA alteration in cells by metallic nanoparticles.

    Read more
  • Artificial intelligence for next-generation ultrafast photonics

    How can machine learning and associated methods improve the development of next-generation laser sources and revolutionize applications where ultrafast light plays a central role?

    Read more

Pages