The institute
FEMTO's news

You are here

Imaging quantum interference of entangled photon pairs of extremely high dimensionality

Researchers from the Optics Department have developed an imaging device allowing the spatial and temporal resolution of the phenomenon of quantum interference between pairs of entangled photons of extremely high dimensionality. This work paves the way for the development of very high dimensional information protocols.

In a crystal, photons of a laser beam can split in pairs of lower frequency, the spontaneous down conversion (SPDC) phenomenon. The so-called twin, or entangled, photons of a pair form a single quantum object. Therefore, if they are sent on a beam-splitter they exit randomly, but both on the same output port. This is the famous Hong-Ou-Mandel (HOM) two-photon interference.

HOM interference is used in novel communication protocols, like quantum teleportation and quantum information processing, but until now without spatial resolution, by using bucket detectors. However, entanglement concerns all properties of twin photons, including their position in space and time, and here HOM interference is obtained for thousands of spatial as well temporal resolution cells, resulting in a total spatio-temporal dimensionality of 3 million.

In our HOM interferometer, spatial coincidences at the output ports are imaged on two cameras operating in photon counting mode. Since we control temporally, spatially, in polarization and in wavelength the indistinguishability between the photons of a pair, we have observed and quantified spatially and temporally the HOM interference at the quantum level, with a visibility of 60%, of more than 4000 photon pairs of extremely large spatio-temporal dimensionality.

Given the essential role played by two-photon HOM interference in most of the systems developed for quantum information processing, demonstrating that HOM interference can be obtained by manipulating quantum states of giant dimensionality opens the way for the development of very high-dimensional quantum information protocols using space and time variables.

This work has just been published in the journal Physical Review X and is highlighted in the CNRS news

Contact : Fabrice Devaux

Référence :

Imaging spatio-temporal Hong-Ou-Mandel interference of biphoton state of extremely high Schmidt number, F. Devaux, A. Mosset P.A. Moreau, et E.Lantz .
Physical Review X, 2020.
DOI : 10.1103/PhysRevX.10.031031

  • Focus on the innovations of the "hydrogen-energy systems" sector

    A few days after the announcement by the government of the launch of a major national hydrogen plan, the Femto-ST institute is organizing on 20 June 2018 at the FCLAB in Belfort, a focus on innovations in the "hydrogen energy systems" sector.

    Read more
  • Robotic assembly of the smallest house in the world

    the handling and assembly capabilities of nanocomponents of the "μRobotex" platform make the buzz on the net and in the international press through the origami manufacturing of a micro-house at the end of an optical fiber whose dimensions are less than the diameter of a hair.

    Read more
  • Nicolas Andreff, receives the scientific award "Charles Defforey" from -Institut de France Foundation

    Awarded May 30 under the Dome of the “ (Institut de France) " by Jean-Paul Laumond, a member of the Academy of Sciences, this Grand Prize crowns the work & skills of Nic

    Read more
  • International Day of Light 2018

    Following the success of the International Year of Light, which highlighted the importance of light-based science and technology and generated more than 13,000 activities in 147 countries, UNESCO proclaimed May 16 as the International Day of Light.

    Read more
  • Enrico Rubiola honored at IFCS 2018

    Enrico Rubiola will receive the W. G. Cady Award at the IFCS 2018 on May 24th.

    Read more
  • L'institut FEMTO-ST partenaire d'un programme européen Marie-Curie H2020 Innovative Training Networ

    The department of Optics of the FEMTO-ST research institute in Besançon
    in France currently has a vacancy for 2 3-years Ph.D positions working in
    the development of mid-infrared and ultraviolet supercontinuum fiber sources within the

    Read more
  • FACS 2016 - The 13th International Conference on Formal Aspects of Component Software

    The DISC department, organizer of the 13th International Conference on FACS.

    Read more
  • Special issue of Comptes Rendus Physique on phononic crystals

    The May 2016 issue of Comptes Rendus Physique (an international peer-reviewed journal of the French Academy of Sciences), is devoted to phononic crystals. This special issue was coordinated by Vincent Laude.

    Read more
  • Paper prize at the international conference VPPC 2014

    At the International IEEE "Vehicle Power and Propulsion Conference" conference held in Coimbra, Portugal from 27 to 30 October 2014, “Hybrid & Fuel Cell Systems” Research Team of Femto-ST Institute won the Paper Prize for the paper titled “Energy management of an hybrid electrical vehicule in degraded operation”

    Read more
  • A book about flexible robotics co-written by Nicolas Chaillet

    The objective of the book "Flexible Robotics: Applications to Multiscale Manipulations" is to provide those interested in the field of flexible robotics with an overview of several scientific and technological advances in the practical field of robotic manipulation.

    Read more

Pages