The institute
FEMTO's news

You are here

A novel approach to filling miniature atomic clock cells

This new method, which gains flexibility, paves the way for large-scale production of atomic sensors.

In recent years, the development of miniature atomic instruments with high sensitivity and accuracy such as clocks or magnetometers is experiencing a real boom. Miniature atomic clocks are intended for example for telecommunications or navigation equipment. These instruments are generally based on the interrogation of a set of alkaline atoms in vapour phase within a cell of millimetre dimensions, generated by micro-fabrication techniques and composed of glass and silicon. One of the difficulties lies in filling these cells with various species (alkaline metals and buffer gases) while preserving the purity and stability of their internal atmosphere over time.

In this context, the work published by FEMTO-ST in Nature Microsystems & Nanoengineering and entitled "Wafer-level vapor cells filled with laser-actuated hermetic seals for integrated atomic devices" proposes a new cell filling technique, inspired by those used for the realization of traditional centimetric glass cells produced by glass blowing, but adapted to microfabrication techniques. This technique is based on micro devices structured in glass and silicon similar to valves that can be operated by laser.

See INSIS/CNRS news

Contact : Nicolas Passilly

  • Daniel HISSEL awarded as « Fellow » of the IEEE society

    Professor in Electrical Engineering at the University of Franche-Comté and researcher at FEMTO-ST, Daniel Hissel has been awarded as  for his work on hydrogen systems.

    Read more
  • March 8, International Women's Day

    "Freedom, like Science, and Women's Rights, are fundamental issues for Humanity."

    FEMTO-ST chooses to display on this day of March 8 (also charged with the serious news of the war in Ukraine), its commitment to each of these three issues.

    Read more
  • First experimental observation of the roton effect in metamaterials

    Experiments conducted jointly by FEMTO-ST and KIT demonstrate the control of forward and backward wave propagation by adjusting the frequency.

    Read more
  • FEMTO-ST partner of the Joint Technology Unit "CAPPLAI"

    For the development of sensors to control and optimize the performance of dairy processes.                                                                                     

    Read more
  • Happy new year 2022 !

    The Management and all the members of FEMTO-ST wish you a year 2022 full of personal and professional satisfactions

    Read more
  • Safa MERAGHNI receives the PEPITE prize in the regional "Female Initiative " competition

    Her project is to create a "Smart Medical Assistant" which is an intelligent medical assistance device on a smartphone designed to help doctors in their diagnosis.

    Read more
  • IEEE ICEMS Conference : Best paper award

    Researchers from SHARPAC team/ENERGY department of FEMTO-ST institute received the Best Paper Award at the IEEE International Conference on Electrical Machines and Systems for their work on the influence of electrical conductivity on eddy-current losses in electrical machines.

    Read more
  • Joint laboratories CNRS-Companies 2021

    FEMTO-ST and AUREA Technology honored at the LAB COM CNRS event in Paris on November 29 and 30

    Read more
  • Nanorobotics of the future: FEMTO-ST enters the 4th dimension

    For the first time, nanorobotic structures have been realized by folding in 3 dimensions a multilayer membrane and proposing their actuation by an electro-thermo mechanical principle.

    Read more
  • Chaos and rogue waves in a supercontinuum laser

    In collaboration with the Universities of Tampere, Aston and ICB laboratory, FEMTO-ST researchers have made significant headway in the ongoing effort to understand the ultrafast chaotic nature of lasers, elucidating for the first time their noise-like pulse operation.

    Read more

Pages