The institute
FEMTO's news

You are here

Polymer-based nanowires

Molecules, salt and light :  an easy recipe to provide giant nanowires !

On-surface polymerization of organic precursors provides new possibilities to form highly-stable and atomically-defined nanostructures with desired properties. As emphasized by the Nobel Prize in Physics in 2016, awarded for early work in understanding topological phase transitions and topological phases of matter, the formation of artificial matter exhibiting properties controlled by their symmetry is very promising in nanoelectronics. This issue has been addressed by many research groups who performed on-surface reactions under ultra-high vacuum (UHV) conditions and on atomically clean single-crystal metal substrates. In this solvent-free environment, classical chemical reactions such as Ullmann type coupling, Glaser coupling, and many more have successfully been used to create well-defined and covalently bound organic 1D and 2D structures with dimensions of about 100 nm. However, for the basic building blocks of molecular circuitry to interconnect active devices there is a need to fabricate isolated nanowires with a length larger than 1 μm.

Other than length, the main limitations of structures fabricated to date for use in future nanoscale electronic and optical devices are (i) the use of metal substrates (for instance, leading to non-radiative quenching), (ii) the high number of defects in the formed covalent structures, and (iii) the side-products of some reactions that might remain on the substrate surface. This is why in our work, published in Nature Chemistry,  we overcome these identified obstacles by using a side product-free 1D polymerization on an alkali-halide surface. This new concept is driven by light-induced radical polymerization, a classic chemical reaction pathway, but one which has never been transferred onto the surface of bulk insulators so far. 

Noncontact atomic force microscopy was used to evaluate the geometrical structure of the fibres formed on the KCl substrate and to test both their mechanical and thermal stability. A deeper insight into the reaction mechanism and the energy barriers involved is obtained by comparing the experimental observations with calculations, which revealed the strong localization of the active biradicals at the fibre ends.

We hope that with our work we will ‘initiate’ a completely new way to synthesize organic compounds on surfaces, especially on insulating substrates.

Contact : Frédéric Chérioux

Link

  • Jean-Antoine Seon : awarded with the 2nd national PHD prize in robotics

    Jean Antoine was distinguished on November 22th at the CNRS headquarters for his pioneer international work on a micro robotic dextral hand.

    Read more
  • Elodie Pahon is the award winner of "Hydrogen Europe Research young Scientist" in the transport field

    This award recognizes her high-level works that aim developping prognosis and smart control approaches dedicated to fuel cell systems. 
    Read more
  • Emmanuel RAMASSO, recipient of a « Group Achievement Award » by NASA

    For outstanding contributions to the open data initiative by conducting and posting experimental system fault and run-to-failure data sets with exceptional scientific value.

    Read more
  • Chimeras exist...

    The American Institute of Physics (AIP) has featured our recent article in a special science highlight, known as a Scilight. Due to its novelty and close connection with ever-present phenomena, reported results are of wide interest to the general public.

    Read more
  • Entrepreneurs-PhD Award in Bourgogne-Franche-Comté: 3 laureates from FEMTO-ST institute

    Vladimir Gauthier (CellSelect project), Aliyasin El Ayouch (Metabsorber project), Romain Viala (MICAD project),   were rewarded during the regional final which took place on October 16 in Dijon

    Read more
  • « Micron d’or » Award at the international microtechnology trade fair

    For one of the most dexterous miniature robots with 7 degrees of freedom, allowing micromanipulation and microassembly in extremely confined spaces

    Read more
  • Discussions about good practices around smart specialization

    In the frame of the 2014-2020 programming of the European Regional Development Funds (ERDF), the European Union has asked all the regions of Europe to draw up a "Smart Specialization Strategy" for research and innovation on their own territory: this is the S3.

    Read more
  • Optical Neural Networks start to learn...

    Work is actively in progress at FEMTO-ST in order to design the photonic architectures dedicated to our future processors that will be computing through artificial intelligence concepts.

    Read more
  • When the light is directed by its magnetic field

    FEMTO-ST researchers have discovered a new optical magnetic interaction to direct light fluxes. These works are published in the journal Light: Science and Applications
    Read more
  • Amar Nath Ghosh awarded at OSA Advanced Photonics Congress

    Amar Nath Ghosh won the Best student paper award of the OSA Advanced Photonics Congress , Zurich.

    Read more

Pages