The institute
FEMTO's news

You are here

Chaos and rogue waves in a supercontinuum laser

In collaboration with the Universities of Tampere, Aston and ICB laboratory, FEMTO-ST researchers have made significant headway in the ongoing effort to understand the ultrafast chaotic nature of lasers, elucidating for the first time their noise-like pulse operation.

Results appeared in Nature Communications, Sept. 22, 2021.

Lasers that emit stable ultrafast femtosecond pulses of light are widely used in technology and industry, and have also been central to fundamental Nobel Prize-winning research.  But in addition to such highly stable operation, such lasers can also be configured to produce highly unstable and irregular output, and in this case their study yields new insights into the nature of chaos, the properties of turbulence, and the emergence of giant extreme rogue waves. However, although such laser instabilities have been known for decades, their experimental study is challenging, and their origins are poorly understood.

Research published in Nature Communications has now reported a major advance in our understanding of the chaotic operation of lasers. In particular, a special class of optical fibre laser has been built to operate only in a highly chaotic regime, and this has allowed advanced experimental techniques to be used to comprehensively measure its instability characteristics. The measurements used state of the art real time methods to build a detailed picture of the laser fluctuations on multiple timescales: from random pulses with duration shorter than a picosecond (a trillionth of second) to instabilities evolving over milliseconds in the laboratory. The experiments have been complemented by a new numerical model which reveals the central role played by incoherent supercontinuum generation dynamics, a highly nonlinear process whereby an initial seed with narrow spectrum experiences massive broadening and leads to the generation of new wavelengths. The model agrees quantitatively with experiment over an optical bandwidth as broad as 1000 nm and a three-order of magnitude dynamic range, representing one of the most remarkable tests of nonlinear laser modelling ever reported.

 These findings have also shown that the supercontinuum laser generates extreme rogue wave pulses and turbulent characteristics as a consequence of unstable soliton dynamics in the cavity.  The results have answered the physical question relating to the mechanisms driving the spectral broadening and instability in such lasers, and may point to approaches to generate even broader spectral bandwidths for applications such as incoherent imaging. Possible interdisciplinary applications may include attempting to create a similarly incoherent resonator for other classes of nonlinear wave such as in hydrodynamics.

The research was performed as part of a collaboration between the Institut FEMTO-ST and the ICB Laboratory in France (CNRS and the University of Bourgogne-Franche-Comté), as well as international partners from Tampere University (Finland) and Aston University (United Kingdom).

Article: https://www.nature.com/articles/s41467-021-25861-4

  1. Meng et al. Intracavity incoherent supercontinuum dynamics and rogue waves in a broadband dissipative soliton laser. Nature Communications 12 (2021). DOI : 10.1038/s41467-021-25861-4

Contact : John Dudley

« Typical chaotic pulse emission from the supercontinuum fiber laser"

  • Nonlinear Optics and Supercontinuum Symposium

    A one day “Nonlinear Optics and Supercontinuum Symposium” will be held on Friday 20 September in the Amphi FEMTO in honour of Professor Chinlon Lin who will be here in Besançon during this time.

    Read more
  • European Time and Frequency Seminar (EFTS)

    The European Frequency an Time Seminar (EFTS) will be held from Monday, August 16 to friday, August 30 2013.

    Read more
  • Two ERC Grants for FEMTO-ST Institute in 2011

    Prof John DUDLEY & Dr Yanne CHEMBO from the Optics Depmarment of FEMTO-ST Institute (UMR 6174 CNRS-Université de Franche-Comté) have both received a financial Grant from the European Research Council (ERC) to support the top level scientific excellence of their research projects

    Read more
  • Michel planat makes the Insights News of the Journal of Physics A: Mathematical and Theoretical

    Michel Planat's Insights news article "Quantum computing with Riemann hypothesis" is now available on the journal's website and can be viewed at http://iopscience.iop.org/1751-8121/labtalk-article/45421. This news article is based on the recent paper published by the Journal of Physics A: Mathematical and Theoretical.

    Read more
  • Summer school in Microrobotics and Self-assembly for hybrid MEMS

    The general context of the summer school concerns the micromanipulation and assembly of such complex microsystems. From the state-of-the-art, integration technologies for heterogeneous microsystems are based on Microrobotics or Self-assembly approaches.

    Read more
  • 4M conference 2010

    Co-organized by FEMTO-ST, 4 M conference will take place in Oyonnax (France) from November 17th to 19th.

    Read more
  • d-MEMS 2010 – Besançon June 28-29th

    FEMTO-ST and LIFC organize the 1 st workshop on design, control & software implementation for distributed MEMS

    Read more
  • Vehicular Power Propulsion Conference - Lille 2010

    FEMTO-ST co-organize The 2010 IEEE Vehicle Power and Propulsion Conference (VPPC) in Lille
    For more informations : http://vppc2010.univ-lille1.fr/

    Read more
  • Conference 'Seizing the Opportunity in Nano-Photonics'

    A conference concerning Photonics will take place in FEMTO-ST on Friday 3rd of April at 2pm.

    Read more
  • Best Poster Award: Younes Makoudi@Elecmol08

    Younes Makoudi, PhD@FEMTO-ST, won the best poster award during the Elecmol08 international conference in Grenoble on December 12 (www.elecmol.com). The aim of his work is the adsorption of functional molecules on surfaces which plays a vital role in the emerging field of nanoelectronics.

    Read more

Pages