The institute
FEMTO's news

You are here

Chaos and rogue waves in a supercontinuum laser

In collaboration with the Universities of Tampere, Aston and ICB laboratory, FEMTO-ST researchers have made significant headway in the ongoing effort to understand the ultrafast chaotic nature of lasers, elucidating for the first time their noise-like pulse operation.

Results appeared in Nature Communications, Sept. 22, 2021.

Lasers that emit stable ultrafast femtosecond pulses of light are widely used in technology and industry, and have also been central to fundamental Nobel Prize-winning research.  But in addition to such highly stable operation, such lasers can also be configured to produce highly unstable and irregular output, and in this case their study yields new insights into the nature of chaos, the properties of turbulence, and the emergence of giant extreme rogue waves. However, although such laser instabilities have been known for decades, their experimental study is challenging, and their origins are poorly understood.

Research published in Nature Communications has now reported a major advance in our understanding of the chaotic operation of lasers. In particular, a special class of optical fibre laser has been built to operate only in a highly chaotic regime, and this has allowed advanced experimental techniques to be used to comprehensively measure its instability characteristics. The measurements used state of the art real time methods to build a detailed picture of the laser fluctuations on multiple timescales: from random pulses with duration shorter than a picosecond (a trillionth of second) to instabilities evolving over milliseconds in the laboratory. The experiments have been complemented by a new numerical model which reveals the central role played by incoherent supercontinuum generation dynamics, a highly nonlinear process whereby an initial seed with narrow spectrum experiences massive broadening and leads to the generation of new wavelengths. The model agrees quantitatively with experiment over an optical bandwidth as broad as 1000 nm and a three-order of magnitude dynamic range, representing one of the most remarkable tests of nonlinear laser modelling ever reported.

 These findings have also shown that the supercontinuum laser generates extreme rogue wave pulses and turbulent characteristics as a consequence of unstable soliton dynamics in the cavity.  The results have answered the physical question relating to the mechanisms driving the spectral broadening and instability in such lasers, and may point to approaches to generate even broader spectral bandwidths for applications such as incoherent imaging. Possible interdisciplinary applications may include attempting to create a similarly incoherent resonator for other classes of nonlinear wave such as in hydrodynamics.

The research was performed as part of a collaboration between the Institut FEMTO-ST and the ICB Laboratory in France (CNRS and the University of Bourgogne-Franche-Comté), as well as international partners from Tampere University (Finland) and Aston University (United Kingdom).


  1. Meng et al. Intracavity incoherent supercontinuum dynamics and rogue waves in a broadband dissipative soliton laser. Nature Communications 12 (2021). DOI : 10.1038/s41467-021-25861-4

Contact : John Dudley

« Typical chaotic pulse emission from the supercontinuum fiber laser"

  • The W. G. Cady Prize awarded to Serge GALLIOU at the IEEE IFCS 2019

    This award recognizes Serge Galliou's exceptional and pioneering contributions in the development of cryogenic acoustic resonators with extremely high quality factors (very low mechanical losses) for sensor, oscillator or fundamental physics applications.

    Read more
  • Two CNRS bronze medals for FEMTO-ST

    Aude Bolopion (biomedical micro-nano robotics) and Nadia Steiner (fuel cell diagnostics) are awarded with the CNRS 2019 bronze medal for their promising research.

    Each year, the CNRS bronze medals welcome some 40 young scientists whose career start is extremely promising

    Read more
  • Best student paper award for Rémi Meyer

    Remi Meyer got the best student presentation award at SPIE-Photonics West conference for his work on ultra-high aspect ratio Bessel beams. Shaping the beam of ultrafast lasers has become now an essential tool for ultra-high intensity laser-matter interaction.

    Read more
  • Visit of the CNRS President to FEMTO-ST

    Antoine Petit, CEO of the CNRS, was welcomed on February 11th at FEMTO-ST.


    Read more
  • Photo John Dudley

    John Dudley awarded by the international Society of Optics and Photonics (SPIE)

    He obtains  the "SPIE Harold E. Edgerton" Award 2019 for pioneering applications based on ultra-short light pulses in optical fibers.

    Read more
  • Award "innovation in optomechatronic research"

    Several members of different scientific departments of FEMTO-ST were rewarded for their joint paper "Photonic microsystem made by dynamic microassembly" at the ISOT conference "19th International Symposium on Optomechatronic Technology" which took place from November 5 to 8 in Cancun

    Read more
  • Entrepreneurs-PhD Award : Second place for Vladimir Gauthier at the national level

    Awarded for his « CellSelect project » he proposes a robot capable of improving the precision and speed of cell sorting in the field of innovative therapies.

    His work is the result of research carried out of Biomedical Microrobotics Team of FEMTO-ST Institute.

    Read more
  • Jean-Antoine Seon : awarded with the 2nd national PHD prize in robotics

    Jean Antoine was distinguished on November 22th at the CNRS headquarters for his pioneer international work on a micro robotic dextral hand.

    Read more
  • Elodie Pahon is the award winner of "Hydrogen Europe Research young Scientist" in the transport field

    This award recognizes her high-level works that aim developping prognosis and smart control approaches dedicated to fuel cell systems. 
    Read more
  • Emmanuel RAMASSO, recipient of a « Group Achievement Award » by NASA

    For outstanding contributions to the open data initiative by conducting and posting experimental system fault and run-to-failure data sets with exceptional scientific value.

    Read more