The institute
FEMTO's news

You are here

IEEE ICEMS Conference : Best paper award

Researchers from SHARPAC team/ENERGY department of FEMTO-ST institute received the Best Paper Award at the IEEE International Conference on Electrical Machines and Systems for their work on the influence of electrical conductivity on eddy-current losses in electrical machines.

Their presentation was indeed selected among 531 in total and received on this occasion the Best Paper Award during this conference which was held from October 31 to November 3 in Gyeongju, Korea.

The paper focuses on the validation of a 2-D analytical model for the eddy-current loss calculation in conductive massive parts (magnet, copper, aluminum…). The electrical conductivity influence associated with the segmentation is studied. The difference between the experimental results and the analytical predictions is less than 5 %.

It is demonstrated experimentally that the segmentation can decrease eddy-current losses in some materials, and increase them in others. It is also established experimentally that segmentation does not automatically reduce eddy-current losses (which has never been done before in the literature).

Référence :

  1. Plait and F. Dubas, “Electrical conductivity influence on eddy-current losses: analytical study and experimental validation,” in Proc. Int. Conf. on Electrical Machines and Systems (ICEMS 2021), Gyeongju, Korea, 31 Oct.-03 Nov. 2021, pp. 554-557. (Award obtained: “ICEMS 2021 Best Paper”).

Acknowledgement :

This work was supported by RENAULT-SAS, Guyancourt, France. This scientific study is related to the project “Conception optimale des chaines de Traction Electrique” (COCTEL) financed by the “Agence de l’Environnement et de la Maîtrise de l’Energie” (ADEME) in the program “Véhicule du futur des Investissements de l’avenir”.

Contacts:

Antony PLAIT et Frédéric DUBAS

  • First experimental observation of the roton effect in metamaterials

    Experiments conducted jointly by FEMTO-ST and KIT demonstrate the control of forward and backward wave propagation by adjusting the frequency.

    Read more
  • FEMTO-ST partner of the Joint Technology Unit "CAPPLAI"

    For the development of sensors to control and optimize the performance of dairy processes.                                                                                     

    Read more
  • Happy new year 2022 !

    The Management and all the members of FEMTO-ST wish you a year 2022 full of personal and professional satisfactions

    Read more
  • Safa MERAGHNI receives the PEPITE prize in the regional "Female Initiative " competition

    Her project is to create a "Smart Medical Assistant" which is an intelligent medical assistance device on a smartphone designed to help doctors in their diagnosis.

    Read more
  • Joint laboratories CNRS-Companies 2021

    FEMTO-ST and AUREA Technology honored at the LAB COM CNRS event in Paris on November 29 and 30

    Read more
  • Nanorobotics of the future: FEMTO-ST enters the 4th dimension

    For the first time, nanorobotic structures have been realized by folding in 3 dimensions a multilayer membrane and proposing their actuation by an electro-thermo mechanical principle.

    Read more
  • Chaos and rogue waves in a supercontinuum laser

    In collaboration with the Universities of Tampere, Aston and ICB laboratory, FEMTO-ST researchers have made significant headway in the ongoing effort to understand the ultrafast chaotic nature of lasers, elucidating for the first time their noise-like pulse operation.

    Read more
  • Julio Andrés Iglesias Martínez receives the Best Student Award at IEEE Ultrasonic Symposium

    His work consists in achieving three-dimensional phononic crystals at the micro-scale with record band-gap width.

    Read more
  • Lessons on textile history and fibre durability from a 4,000-year-old Egyptian flax yarn

    Published in the journal Nature Plants, work involving FEMTO-ST scientists is helping to propose ever more efficient and resistant materials based on flax fibers.

    Read more
  • Programmable matter: world record attempt

    A FEMTO-ST research team is trying to get the record for the largest number of autonomous light blocks assembled in a structure approved by the "Guiness World Record".

    Read more

Pages