The institute
FEMTO's news

You are here

Room temperature stable molecules adsorbed on semi-conductors

The adsorption of functional molecules on surfaces plays a vital role in the emerging field of nanoelectronics. In this context, molecular and supramolecular ordering, which are key steps in the development of complexes architectures, are controlled by a balance between intermolecular forces and molecule–substrate interactions.

Isolated molecules on Si(111)-B

Isolated molecules on Si(111)-B

Isolated molecules on Si(111)-B
Image 8x12nm2

The deposition of organic molecules and preservation of their entire skeleton, especially on semiconductor surfaces, is still a challenge, although much progress has been made in the development of metallic surface-based devices with organic molecules at low temperature, where the molecule–surface interactions are weak and diffusion remains low. However, the use of metallic substrates is less attractive for potential applications as semiconductors, especially in the field of nanoelectronics.

2D-molecular star on Si(111) 7x7

2D-molecular star on Si(111) 7x7

2D-molecular star on Si(111) 7x7
Image 6x7nm2

In order to circumvent the problem of traditional silicon surface reactivity with pi-conjugated molecules, the Si(111)-B surface is used. This surface has the unique particularity to exhibit depopulated dangling bonds due to the presence of boron atoms under the top silicon layer. We have shown that the weak interactions between rich pi-electron molecules with empty pz depopulated dangling orbitals of the Si-B surface are most likely to be at the origin of the specific adsorption of isolated triazine molecules at the Si-B surface. This structure is stable at room temperature, and the pi-conjugated skeleton of organic molecules is preserved even after deposition [1].

We propose a new concept for the room-temperature deposition of pi-conjugated organic molecules, without any modification of their electronic structure, at specific adsorption sites on the surface of the semiconductor Si(111)-7x7 by adsorbing p-conjugated zwitterionic molecules on this semiconductor surface. The presence of a negative charge on the target molecules offsets the electrophilic character of the Si(111)-7x7 adatoms and preserves the p skeleton of the organic molecules after deposition. The half-cells of Si(111)-7x7 act as a template that guides the molecular assembly of achiral molecules, as shown by the induction of chirality in the modified areas [2].

The results reported herein are remarkable from several different points of view, especially the molecular assembly at room temperature, the chirality of the assembly, and the stability and conservation of the pi-conjugated skeleton on the semiconductor surface at room temperature. These strategies may become important methods for the deposition of pi-conjugated molecules.

Contact: frank.palmino@pu-pm.univ-fcomte.fr

The Nanosciences group are: Y. Makoudi (PhD), Dr F. Palmino, Dr E. Duverger, Dr F. Chérioux.

[1] Y. Makoudi, M. Arab, F. Palmino, E. Duverger, F. Chérioux, C. Ramseyer, M. J.-L. Tschan, B. Therrien, G. Süss-Fink, Phys. Rev. Lett., sous presse, parution Février 2008.

[2] Y. Makoudi, M. Arab, F. Palmino, E. Duverger, C. Ramseyer, F. Picaud, F. Chérioux, Angew. Chem. Int. Ed., 2007, 46, 9287-9290.

  • National Days on Emerging Technologies in Micro-Nanofabrication

    These scientific days, which take place from November 30 to December 2 in Besançon, France, bring together the major French players in micro-nanotechnologies, process engineering, physics and modeling of manufacturing processes.

    Read more
  • 16th International Symposium on Distributed Autonomous Robotic Systems

    Nearly a hundred scientists from all over the world will meet under the auspices of FEMTO-ST, in Montbéliard from November 28 to 30 to exchange on an interdisciplinary field in full expansion.

    Read more
  • Fei Gao wins the "Sustainable Future Visionary Award"

    Full professor at UTBM and researcher at FEMTO-ST institute, Fei Gao is today one of the world's leading specialists in fuel cells and digital twins.

    Read more
  • Gold micron award at MICRONORA trade fair 2022

    FEMTO-ST is awarded a gold micron for its three-dimensional nanorobotic structure, which is precisely and continuously actuated according to the power of light for the gripping of nano objects.

    Read more
  • FEMTO-ST at MICRONORA trade fair 2022

    From September 27th to 30th, more than 600 direct exhibitors and 15000 professional visitors are expected in Besançon on the international microtechnology exhibition. FEMTO-ST and FEMTO Engineering will be present.

    Read more
  • The fastest pick-and-place robot in the world

    A research team has developed a miniature robot capable of manipulating micrometric objects at unprecedented speeds. This work has been published in the prestigious American journal "Science Robotics"

    Read more
  • Aude Bolopion receives the 2022 “Big-in-Small award”

    This yearly award, from the microrobotics international community in the MARSS conference in Toronto, promotes “the best microrobotician” of the year at the international level.

    Read more
  • FEMTO-ST : 2 full professors appointed to the IUF in its class 2022

    Ausrine MARGUERON-BARTASYTE and Daniel HISSEL are among the 164  national laureates appointed to the Institut Universitaire de France (IUF) by the Minister of Higher Education and Research

    Read more
  • Tribute to our colleague Philippe LUTZ

    Our scientific community of Burgundy-Franche-Comté has just suddenly lost Philippe LUTZ, full professor at the University of Franche-Comté and a leading figure in microrobotics and micromechatronics research at the FEMTO-ST laboratory.

    Read more
  • How to create a chemical bond with light?

    The formation of a chemical bond between two molecules often requires an activation process. Light is a stimulus that is particularly interesting

    Read more

Pages