The institute
FEMTO's news

You are here

Julio Andrés Iglesias Martínez receives the Best Student Award at IEEE Ultrasonic Symposium

His work consists in achieving three-dimensional phononic crystals at the micro-scale with record band-gap width.

The study of periodic artificial structures such as phononic crystals opens up the possibility for  engineering effective mechanical and acoustical properties, as well as introducing bandgaps. Ultrasonics offers a wide range of potential applications, such as imaging techniques at frequencies from 1 to 15 MHz, typically. Thanks to additive manufacturing, the fabrication of complex structures such as 3D phononic crystals are now made possible. However, the limited resolution of conventional 3D printers, of the order of a few tens of micrometers, limits their working frequencies well below 1 MHz. That is a reason why three-dimensional phononic crystals operating at frequencies above 1 MHz remain elusive. In this work, we designed, fabricated, and characterized a 3D phononic crystal that has a wide band gap for frequencies extending from 0.6 MHz to 7.5 MHz, which sets a record in the field. The crystal samples are fabricated at the microscale using two-photon lithography, thanks to the facilities of the MIMENTO nanofabrication center of Institute FEMTO-ST.

REFERENCES

[2] J.A. Iglesias Martínez, J. Moughames, G. Ulliac, M. Kadic and V. Laude, Presentation at the IEEE International Ultrasonic Symposium, Best Student Award in the category Physical Acoustics (September 2021).

[1] J.A. Iglesias Martínez, J. Moughames, G. Ulliac, M. Kadic and V. Laude, “Three-dimensional phononic crystal with ultra-wide bandgap at megahertz frequencies,” Applied Physics Letters 118 (6), 063507 (2021).

  • FEMTO-ST is launching its support program for MSCA Postdoctoral Fellowships applications !

    The Boostcamp is a two-day intensive workshop aimed at helping international researchers develop a strong application for the 2025 Marie Skłodowska-Curie Postdoctoral Fellowship.

    Read more
  • Using artificial intelligence to collect agricultural data

    ANR OCOD project combines intelligent sensors, drones and optimization for data collection in constrained natural environments

    Read more
  • A European project to prevent perineal tears

    PELVITRACK offers a predictive tool for patricians as part of an interdisciplinary European consortium involving FEMTO-ST.

    Read more
  • Best Paper Award at BIOSTEC 2025

    The work of Ouassim Boukhennoufa and his team combines AI and image optimization in nuclear medicine for more accurate and earlier detection of parathyroid anomalies.

    Read more
  • Kagomé structures for quantum technologies

    Quantum technologies open up promising prospects, but require the development of new materials with remarkable properties.

    Read more
  • Launch of the European SAMI project for energy-free intelligent sensors

    A major scientific and technological collaboration between Silmach and FEMTO-ST in the field of intelligent, autonomous sensors kicks off on January 30.

    Read more
  • RENATECH 2024 PhD AWARD

    Adria Grabulosa is rewarded for his work on 3D printed circuits using an original two-photon optical additive manufacturing technique.

    Read more
  • Elsevier article award at BFAS 2024

    Artificial intelligence applied to the electroerosion machining process : Loïc Guiziou1, Emmanuel Ramasso1, Sébastien Thibaud1 et Sébastien Denneulin2 won second prize for best paper at the 8th International Conference on Belief Functions.

    Read more
  • Tribute to our colleague Sarah Benchabane

    The CNRS and the university community of Bourgogne Franche-Comté are in mourning following the death of Sarah Benchabane, Director of Research at the CNRS and internationally renowned researcher in phononics, affiliated to the FEMTO-ST laboratory.

    Read more
  • Does the i-motif structure of DNA exist in the cell?

    As part of an interdisciplinary project involving FEMTO-ST, a new scientific study is reopening the debate on the very existence of these structures in DNA and their potential therapeutic interest in cell biology for the treatment of certain cancers.

    Read more

Pages